
Programa de Doctorado en Tecnologías de la

Información y la Comunicación

Soft Computing

Doctoral Thesis

GenoMus
Towards artificial creativity through
metaprogramming of musical genotypes

Author

José López-Montes

Thesis Directors

Miguel Molina-Solana
Department Computer Science and AI – ETSIIT

Waldo Fajardo Contreras
Department Computer Science and AI – ETSIIT

a Jólogo

Acknowledgments Agradecimientos

One of the greatest joys
in my Brownian academic path

was the reception of my research proposal
by Waldo Fajardo and Miguel Molina.

Despite my limited knowledge in
computer science and knowledge engineering,

both of them supported this proposal
from the beginning and welcomed it

into their department at ETSIIT.
Now I hope to correspond their trust.

Dori’s nourishing support
and the constant emotional care

from Julia, Carlos and Diego
have made it possible

for this thesis to be completed,
even when it seemed

unachievable at many moments.

And at the core,
there are my mother

and my father (Jólogo),
who nurtured in us

a genuine enthusiasm
for art and knowledge

as two inseparable sides
of the same plane.

Una de las mayores alegrías
de mi browniana trayectoria académica
fue el recibimiento que
Waldo Fajardo y Miguel Molina
hicieron de mi propuesta de investigación.
A pesar de que mis conocimientos en informática
e ingeniería eran escasos, los dos apostaron desde
el principio por esta propuesta y la acogieron
en su departamento de la ETSIIT.
Espero poder corresponder ahora a esa confianza.

El nutritivo apoyo de Dori
y el cuidado emocional constante
de Julia, Carlos y Diego
han conseguido que,
aunque en muchos momentos
parecía que no lo lograría,
esta tesis haya llegado a ser completada.

Y en el núcleo,
están mi madre
y mi padre (Jólogo),
quienes incubaron en nosotros
un entusiasmo genuino por
el arte y el conocimiento
como dos caras inseparables
del mismo plano.

Abstract

This doctoral thesis introduces GenoMus, a generative and bioinspired computational
model for the development of artificial musical creativity based on metaprogramming.
It is designed for both autonomous use and human-machine collaboration. The model
comprises a representation system, a library of generative and auxiliary functions, and an
interactive interface for musical experimentation.

The representation system defines the genotype as the functional tree of underlying
procedures in a musical piece, and the phenotype as the musical outcome of these pro-
cesses. Both elements interconnect to form a bidirectional generative grammar that serves
as both a programming language and an abstract numerical representation. Its design
is optimized to streamline one-dimensional encoding, metaprogramming, and seamless
integration with any machine learning model utilizing numerical vectors.

GenoMus has been developed through a theoretical-practical methodology, undergo-
ing testing in musical creation projects. The model’s design has been shaped by these
artistic experiences, evolving iteratively through a cycle of conceptual framework review,
algorithm refinement, and practical application in musical compositions, presented as part
of this research.

keywords:

○ automatic musical composition
○ metaprogramming
○ procedural representation of music
○ artificial creativity
○ bioinspired composition
○ GenoMus

Resumen

Esta tesis doctoral presenta GenoMus, un modelo computacional generativo y bioinspi-
rado para el desarrollo de la creatividad musical artificial, basado en la metaprogramación,
y diseñado tanto para su uso autónomo como para la colaboración humano-máquina. El
modelo consta de un sistema de representación, una biblioteca de funciones generativas y
auxiliares, y una interfaz interactiva para la experimentación musical.

El sistema de representación define como genotipo al árbol funcional de los procedi-
mientos subyacentes en una pieza musical, y el fenotipo como el resultado musical de esos
procesos. Ambos elementos se interrelacionan constituyendo una gramática generativa
bidireccional que es simultáneamente un lenguaje de programación y una representación
numérica abstracta. Su diseño se ha optimizado para simplificar la codificación unidi-
mensional, la metaprogramación y la integración con cualquier modelo de aprendizaje
automático que utilice vectores numéricos.

GenoMus se ha desarrollado desde una metodología teórico-práctica, poniéndose a
prueba en proyectos de creación musical. El diseño del modelo ha sido guiado por estas
experiencias artísticas, en un ciclo iterativo de revisión del marco conceptual, reescritura
de los algoritmos y aplicación en composiciones musicales, presentadas como parte de
esta investigación.

palabras clave:

○ composición musical automática
○ metaprogramación
○ representación procedimental de la música
○ creatividad artificial
○ composición bioinspirada
○ GenoMus

Contents

Abstract iv

Resumen v

Contents vi

Figures xi

Tables xvi

Code listings xvii

Introduction 1
Programming is (meta)composing . 2

Scope of the study . 4

Hypothesis and research objectives . 8

Interactive experimental setup . 10

What this research is not about . 13

Thesis structure and reading recommendations . 14

Source code and software . 17

1 Background 18
1.1 Artificial creativity or creative artifice? . 20

1.2 The role of the machine in the evolution of style 21

1.3 Trends in CAC . 23

1.4 Exploration of abstract mathematical processes 25

1.5 Grammars for automated composition . 27

1.6 CAC meets AI . 29

1.7 Bioinspired strategies . 30

1.8 Metaprogramming and functional programming 32

1.9 The problem of automated aesthetic evaluation 34

1.10 Insights into aesthetic pleasure . 37

2 Conceptual and formal framework 38
2.1 Composing composers . 38

2.2 Music as an encoded functional grammar . 40

2.3 The biological metaphor . 41

2.4 Formal definitions . 44

2.5 Retrotranscription of genotypes into germinal vectors 47

3 Main data structures 49
3.1 Anatomy of a specimen . 49

3.2 Function types . 54

3.3 Anatomy of a genotype function . 56

3.4 Leaf types . 61

3.5 Leaf parameters and mapping design . 62

3.5.1 Eligible values and Gaussian conversion 63

3.5.2 Generic parameter leaf . 65

3.5.3 voidLeaf . 66

3.5.4 notevalueLeaf . 67

3.5.5 midipitchLeaf . 69

3.5.6 articulationLeaf . 71

3.5.7 intensityLeaf . 72

3.5.8 quantizedLeaf . 73

3.5.9 Golden encoded integers and goldenintegerLeaf 74

3.6 Internal structure of the score . 77

3.7 Representations of generated music . 81

4 Genotype functions 84
4.1 Identity functions . 84

4.2 Lists . 86

4.3 Formal structures . 87

4.4 Deterministic and random processes . 93

4.5 Repetition and iteration . 95

4.6 Harmony . 97

4.7 Generative subprocesses . 105

4.8 Recursions with type recursiveF . 108

4.9 Internal autoreferences . 115

4.9.1 The importance of self-reference in music 115

4.9.2 Subgenotype indexing . 116

4.9.3 Minimal examples of internal autoreference 117

4.9.4 Definition of autoref functions . 119

4.9.5 Indexing tree and subgenotype calls . 121

4.10 Genotype functions libraries . 124

4.10.1 Creation and updating of libraries . 124

4.10.2 Indexing functions with golden encoded integers 127

4.10.3 Influence of the palette of eligible functions on style 128

5 Encoding and decoding 129
5.1 Genotype encoding . 130

5.1.1 Leaf type identifiers . 130

5.1.2 Leaf values . 131

5.1.3 Function opening and closing flags . 131

5.1.4 Genotype function indices . 131

5.2 Minimal examples . 132

5.3 Visualization of unidimensional vectors . 133

5.4 Germinal vector and genotype decoding . 138

5.5 Initial conditions for specimen rendering . 138

5.6 Retrotranscription of genotypes as germinal vectors 143

5.7 Phenotype encoding . 144

5.8 Phenotype decoding . 146

6 Specimens generation 151
6.1 Metaprogramming of genotypes . 152

6.1.1 Summary of the subprocesses . 152

6.1.2 The core metaprogramming subroutine 154

6.2 Formatting of specimens . 162

6.3 Specimen metadata . 165

6.3.1 specimenID . 165

6.3.2 comments . 165

6.3.3 rating . 166

6.3.4 generativityIndex . 166

6.3.5 germinalVectorDeviation . 166

6.3.6 history . 167

6.4 Playback options as epigenetic conditions . 168

6.4.1 Tempo control with playbackRate . 168

6.4.2 Rhythm quantization with minQuantizedNotevalue 168

6.4.3 Equal temperaments with stepsPerOctave 173

7 Evaluation and evolution 176
7.1 Specimen and variations . 177

7.1.1 Music from pure randomness . 177

7.1.2 Starting with very short germinal vectors 179

7.1.3 Leaves mutation . 180

7.1.4 Germinal vector mutation . 183

7.2 Coevolutionary techniques . 185

7.3 Sessions and global status . 187

7.4 Temperature and segmentation . 189

8 Procedural analysis 191
8.1 Clapping Music as a procedural genotype . 192

8.2 Converting a procedure into a new genotype function 196

9 Results 198
9.1 A procedural framework optimized for metaprogramming 199

9.2 Artistic research shaping software . 201

9.3 An open tool for augmented musical creativity 204

10 Conclusions 205

11 Conclusiones 209

Appendices

A GenoMus user interface 213
A.1 Main patch . 213

A.2 Communication with core code . 219

A.3 Control of initial conditions . 220

A.4 Decoded genotype editor . 221

A.5 Specimen monitoring . 224

A.6 Score viewers . 226

A.7 Selection and evolution of specimens . 229

A.8 Outputs . 231

B Musical works 232
B.1 Threnody for Dimitris Christoulas . 233

Artistic concept . 233

Reception . 234

Methods . 234

A genetic algorithm for electronics . 235

Genotypes and scores . 240

B.2 Ada + Babbage − Capricci . 259

Artistic concept . 259

Genotypes and scores . 262

B.3 Microcontrapunctus . 287

Artistic concept . 287

Methods . 288

Waveforms and spectrograms . 305

B.4 Seven Places . 322

Artistic concept . 322

Methods . 324

B.5 Choral Riffs from Coral Reefs . 326

Artistic concept and methods . 326

B.6 Juno . 328

Heuristics for harmony and instrumentation 328

B.7 Openings for FACBA Podcasts . 331

Ready-made music . 332

B.8 Tiento . 333

Artistic concept . 333

Methods . 334

Waveform and spectrogram . 336

B.9 Rudepoema na penumbra . 342

Artistic concept . 342

Methods . 342

Waveform and spectrogram . 343

Bibliography 348

Figures

1 Automation levels for symbolic music composition 4

2 Scheme of development and experimental setup 12

3 Mappings from germinal conditions to decoded phenotypes 48

4 Mapping uniform distribution to Gaussian-like 65

5 Conversion from generic parameter to notevalue 67

6 Logarithmic plot of conversion from generic parameter to notevalue 68

7 Conversion from generic parameter to midipitch 70

8 Conversion from generic parameter to articulation 72

9 Conversion from generic parameter to intensity 73

10 Conversion from generic parameter to quantized value 74

11 Conversion from integer to golden encoded integer 75

12 Constituent structures of a score . 78

13 Visual depiction of merging scores . 80

14 Condensed SVG score . 82

15 Multivoice output SVG score . 83

16 Simple score created with sConcatS . 93

17 Random lists produced by lRnd and lGaussianRnd 94

18 Comparison between repetition and iteration of the same event 95

19 Iteration of a list containing a random item . 97

20 Steps to assemble a harmonicGrid . 100

21 Influence of the degree of chromaticism . 101

22 Adjustment of an entire score to a pentatonic scale with sHarmonicGrid . . 103

23 Score with two transpositions of a pitch class set as harmonic grids 104

24 Three versions of a vMotiv with lBrownian generative functions 107

25 Sequences generated with lLogisticMap . 109

26 Score generated using recursiveF functions . 115

27 Minimal example of autoreference . 119

28 Selection of genotype functions with golden encoded integers 132

29 Decomposition and encoding of minimal genotypes 133

30 Genotype and its annotated visualization . 135

31 Color assignment for leaf values . 136

32 Monochromatic visualization of an encoded genotype 136

33 Encoded and decoded genotype, along with its visualization 137

34 Encoding genotypes from germinal vectors . 139

35 Germinal vector in parallel to encoded and decoded genotype 141

36 Visualization of a germinal vector and corresponding encoded genotype . . 142

37 Equivalent germinal vectors to obtain the same genotype 143

38 Automated rule set for encoding phenotypes into one-dimensional vectors 144

39 Germinal vector, encoded genotype, and corresponding encoded phenotype 147

40 Score corresponding to the decodedPhenotype in Listing 49 149

41 Composition of the specimenID to assign unique specimen names 165

42 Comparison of the same phenotype with different quantization values . . . 172

43 Visualized encoded phenotypes with variations in minQuantizedNotevalue 173

44 Comparison of the same excerpt with different temperaments 174

45 Excerpts with non-integer values for stepsPerOctave 175

46 Two examples of specimens generated with a very short germinal vector . . 178

47 Visualization of a germinal vector and corresponding encoded genotype . . 179

48 Four versions of a genotype with progressive leaves mutations 180

49 Comparison between a germinal vector and its mutation 183

50 Genotype with progressive germinal vector mutations 184

51 Genotype with progressive germinal vector mutations (continuation) 185

52 Scores generated by small mutations on an initial germinal vector 186

53 Compressed score of Reich’s Clapping Music . 192

54 Functional tree of Clapping Music decoded genotype 196

55 Visualization of Clapping Music encoded genotype 197

56 GenoMus main patch in presentation mode . 214

57 GenoMus main patch in edition mode . 214

58 Communication subpatch with the GenoMus core code 219

59 Control of the set of eligible functions . 220

60 Graphical display of the germinal vector . 221

61 Decoded genotype text editor with compressed formatting 221

62 Decoded genotype text editor with semiexpanded formatting 222

63 Decoded genotype text editor with expanded formatting 223

64 Viewers of encoded data and bach.roll converted data 224

65 Viewer for the complete data of the specimen as formatted text 224

66 Specimen viewer . 225

67 Collapsed score viewer with a microtonal example 226

68 Collapsed score viewer showing extra parameters, event tags and timegrid. 226

69 Main score viewer displaying voices separately 227

70 Subpatch evolution to handle evolutionary processes 229

71 Subpatch sessionInfo to monitor metadata of generative sessions 229

72 Subpatch outputs . 231

73 Threnody for Dimitris Christoulas — all genotypes and graphical phenotypes 237

74 Recursio I–a — genotype, graphical phenotype and beginning of score . . . 240

75 Recursio II — genotype, graphical phenotype and beginning of score 241

76 Recursio III–a — genotype, graphical phenotype and beginning of score . . 242

77 Recursio III–b — genotype, graphical phenotype and beginning of score . . 243

78 Recursio IV–a — genotype, graphical phenotype and beginning of score . . 244

79 Recursio V — genotype, graphical phenotype and beginning of score 245

80 Recursio IV–b — genotype, graphical phenotype and beginning of score . . 246

81 Recursio VII — genotype, graphical phenotype and beginning of score . . . 247

82 Recursio VIII — genotype, graphical phenotype and beginning of score . . . 248

83 Recursio IX — genotype, graphical phenotype and beginning of score 249

84 Recursio X — genotype, graphical phenotype and beginning of score 250

85 Recursio I–b — genotype, graphical phenotype and beginning of score 251

86 Recursio XI — genotype, graphical phenotype and excerpts from score . . . 252

87 Recursio XI — score continuation . 253

88 Recursio XII — genotype, graphical phenotype and score 254

89 Recursio XIII — genotype and graphical phenotypes, XIII–a & b — score . . 255

90 Recursio XIII–d2 & d3 — score . 256

91 Recursio XIII–d4 & d5 — score . 257

92 Recursio XIII–d6 — score . 258

93 Max patch for study of multitempi with individual click tracks 258

94 Ada + Babbage − Capricci — graphical phenotypes 261

95 Capriccio I — genotype, graphical phenotype and beginning of score 263

96 Capriccio II — genotype, graphical phenotype and beginning of score 264

97 Capriccio III — genotype, graphical phenotype and beginning of score . . . 266

98 Capriccio IV — genotype, graphical phenotype and beginning of score . . . 267

99 Capriccio V — genotype, graphical phenotype and beginning of score 268

100 Capriccio VI — genotype, graphical phenotype and beginning of score . . . 270

101 Capriccio VII — genotype, graphical phenotype and beginning of score 271

102 Capriccio VIII — genotype, graphical phenotype and beginning of score . . 273

103 Capriccio IX — genotype, graphical phenotype and beginning of score . . . 275

104 Capriccio X — genotype, graphical phenotype and beginning of score 276

105 Capriccio XI — genotype, graphical phenotype and beginning of score . . . 278

106 Capriccio XII — genotype, graphical phenotype and beginning of score . . . 280

107 Capriccio XIII — genotype, graphical phenotype and beginning of score . . 282

108 Capriccio XIV — genotype, graphical phenotype and beginning of score . . 283

109 Capriccio XV — genotype, graphical phenotype and beginning of score . . . 285

110 Capriccio XVI — genotype, graphical phenotype and beginning of score . . 286

111 Microcontrapunctus — Speakers setup at Istituto Pietro Mascagni (Livorno) 288

112 Basic sound created with the Csound instrument for Microcontrapunctus . . 292

113 Modifications of the attack . 293

114 Amplitude envelopes . 294

115 Application of different powers to the amplitude envelope 295

116 Addition of a modulating noise source . 296

117 Additional ring modulation . 297

118 Single sound grain with different modulations 298

119 Csound score and sequence of various microsounds 299

120 Data generated by Microcontrapunctus’ genotype functions of type list 301

121 Data flow from the encoded genotype to the microsound sequence 303

122 Example of actual fragment of the final composition 305

123 Microcontrapunctus — waveforms and spectrogram 0∶24.5 - 0∶27.0 306

124 Microcontrapunctus — waveforms and spectrogram 0∶55.3 - 0∶58.1 307

125 Microcontrapunctus — waveforms and spectrogram 1∶07.1 - 1∶09.9 308

126 Microcontrapunctus — waveforms and spectrogram 1∶26.3 - 1∶29.1 309

127 Microcontrapunctus — waveforms and spectrogram 1∶32.6 - 1∶35.9 310

128 Microcontrapunctus — waveforms and spectrogram 1∶43.8 - 1∶47.0 311

129 Microcontrapunctus — waveforms and spectrogram 2∶12.7 - 2∶16.0 312

130 Microcontrapunctus — waveforms and spectrogram 2∶30.0 - 2∶32.8 313

131 Microcontrapunctus — waveforms and spectrogram 3∶06.1 - 3∶09.3 314

132 Microcontrapunctus — waveforms and spectrogram 3∶26.8 - 3∶30.0 315

133 Microcontrapunctus — waveforms and spectrogram 3∶30.4 - 3∶33.1 316

134 Microcontrapunctus — waveforms and spectrogram 4∶19.7 - 4∶22.4 317

135 Microcontrapunctus — waveforms and spectrogram 4∶29.1 - 4∶31.3 318

136 Microcontrapunctus — waveforms and spectrogram 5∶36.0 - 5∶38.7 319

137 Microcontrapunctus — waveforms and spectrogram 6∶11.3 - 6∶14.0 320

138 Microcontrapunctus — waveforms and spectrogram 7∶13.0 - 7∶15.8 321

139 Seven Places — score’s first page . 323

140 Seven Places — video script, score and tape spectrogram, bars 59 to 69 . . . 324

141 Seven Places — video script, score and tape spectrogram, bars 70 to 79 . . . 325

142 Spectrograms of excerpts from Choral Riffs from Coral Reefs 327

143 Juno — bars 27 to 47 . 329

144 Juno — bars 78 to 93 . 330

145 First conceptualization of germinal vector and retrotranscription 335

146 Spectrogram of Tiento . 341

147 Spectrogram of Rudepoema na penumbra . 347

Tables

1 Definitions of key concepts . 43

2 Specimen data structure . 54

3 Genotype function types, tags, and identifiers 55

4 Object keys of a subspecimen returned by a genotype function 57

5 Leaf types labels . 62

6 Arguments to configure a harmonicGrid . 98

7 Data structure of the eligibleFunctionsLibrary Object 127

8 Numerical encoding of functional expression tokens 134

9 Description and examples of initialConditions for specimen generation . 140

10 Functions related to creation and modification of specimens 154

11 Transformations applied to obtain a new generation 187

12 Genotype functions used to model Clapping Music 193

13 Minimal elements required to model Clapping Music procedurally 193

14 Subgenotypes stored in Clapping Music specimen 195

15 Data structure of new genotype function sClapping 197

16 Iterative stages of prototype creation . 204

17 Functionalities of the GenoMus main patch . 219

18 Functionalities of the score viewer . 228

19 Functionalities of the evolution subpatch . 231

20 Threnody for Dimitris Christoulas: formulae for Recursio I–a to XII 238

21 Threnody for Dimitris Christoulas: formulae for Recursio XIII–a to XII–d4 . . . 239

22 Microcontrapunctus — genotype functions . 300

Code listings

1 Simple subspecimen . 50

2 Simple rendered specimen . 51

3 Minimal genotype function example (midipitchF identity function m) 58

4 Subspecimen returned by expression m(60) . 58

5 Declaration of vMotif function . 59

6 Indexing genotipe functions in genotypeFunctionsLibrary 60

7 Genotype functions indexed in genotypeFunctionsLibrary 61

8 Subspecimen returned by a generic parameter 66

9 Subspecimen returned by pRnd() . 66

10 Implementation of conversion to golden encoded integer 76

11 Subspecimen returned by eventF identity function 85

12 Subspecimen returned by eventF identity function with generic parameters 85

13 Indentity functions after reaching depth limit 86

14 Subspecimen returned by listF identity function 87

15 Subspecimen returned by lmidipitchF identity function 87

16 Implementation of vConcatV function . 88

17 Implementation of mergeScores auxiliary function 89

18 Concatenated scores with sConcatS . 92

19 Implementation of subgenotype iteration vIterE 96

20 Iteration of lists with lIterL . 97

21 Identity function h of harmonyF type . 99

22 Subspecimen of a harmonyF function . 99

23 Definition of a function to create harmonic grids with octatonic scales . . . 102

24 Genotype with two simultaneous harmonic grids based on pitch class sets . 104

25 Beginning of the definition of the generative function lBrownian 105

26 Framework auxiliary function to create list converters 106

27 vMotiv with lBrownian generative functions . 106

28 Details of the implementation of a generative functions 107

29 vMotiv with lLogisticMap generative functions 108

30 Function lRecursioOrder2 with recursiveF argument 109

31 Simplest subspecimen of a recursiveF function 111

32 Genotype with a Fibonacci-like recursion . 112

33 Genotype with recursions . 112

34 Subspecimen returned by a compound recursion 114

35 Definition of lConcatL genotype function . 116

36 Indexation of subgenotypes with indexDecGens 116

37 Internal autoreference to a score . 117

38 Example of subGenotypes Object . 117

39 Equivalent genotype after evaluating internal autoreference to a score . . . 118

40 Equivalent genotype with autoreferences . 119

41 Framework function autoref to create all autoreferences functions 120

42 Definition of some autoreference functions . 121

43 Visualization of autoreferences and indexing order 122

44 Object subGenotypes created after evaluating a decoded genotype 123

45 Function indexGenotypeFunction to create an all functions library 124

46 Data structure of genotypeFunctionsLibrary data structure 125

47 Implementation of vConcatV . 145

48 Simple decoded genotype using events with one extra parameter 146

49 Data structure of a phenotype within a specimen 148

50 Implementation of core function createGenotype 154

51 Function evalExpr as alternative to eval . 160

52 A call to the function createGenotype . 160

53 Object returned by createGenotype . 160

54 Decoded genotype generated by a germinal vector of only three values . . . 162

55 Implementation of specimens creator specimenDataStructure 163

56 Implementation of specimenMinimalData . 164

57 Example of history in a specimen metadata . 167

58 Decoded genotype with depthThreshold = 12 169

59 Comparison of decoded genotypes before and after a leaves mutation . . . 181

60 Array with positions and values of leaves returned by extractLeaves 181

61 mutateSpecimenLeaves creates variations of specimens by mutating leaves . 182

62 Example of a GenoMus session stored in statusGenoMus 188

63 Function segmentation to control the composition of new generations . . . 189

64 Temperature-based segmentation of transformations applied to evolution . 190

65 Decoded genotype of Clapping Music model . 194

66 Threnody for Dimitris Christoulas — Genotype of Recursio I–a 240

67 Threnody for Dimitris Christoulas — Genotype of Recursio II 241

68 Threnody for Dimitris Christoulas — Genotype of Recursio III–a 242

69 Threnody for Dimitris Christoulas — Genotype of Recursio III–b 243

70 Threnody for Dimitris Christoulas — Genotype of Recursio IV–a 244

71 Threnody for Dimitris Christoulas — Genotype of Recursio V 245

72 Threnody for Dimitris Christoulas — Genotype of Recursio IV–b 246

73 Threnody for Dimitris Christoulas — Genotype of Recursio VII 247

74 Threnody for Dimitris Christoulas — Genotype of Recursio VIII 248

75 Threnody for Dimitris Christoulas — Genotype of Recursio IX 249

76 Threnody for Dimitris Christoulas — Genotype of Recursio X 250

77 Threnody for Dimitris Christoulas — Genotype of Recursio I–b 251

78 Threnody for Dimitris Christoulas — Genotype of Recursio XI 252

79 Threnody for Dimitris Christoulas — Genotype of Recursio XII 254

80 Threnody for Dimitris Christoulas — Genotype of Recursio XIII–a to XIII–d6 . 255

81 Ada + Babbage − Capricci — Genotype of Capriccio I 262

82 Ada + Babbage − Capricci — Genotype of Capriccio II 264

83 Ada + Babbage − Capricci — Genotype of Capriccio III 265

84 Ada + Babbage − Capricci — Genotype of Capriccio IV 267

85 Ada + Babbage − Capricci — Genotype of Capriccio V 268

86 Ada + Babbage − Capricci — Genotype of Capriccio VI 269

87 Ada + Babbage − Capricci — Genotype of Capriccio VII 271

88 Ada + Babbage − Capricci — Genotype of Capriccio VIII 272

89 Ada + Babbage − Capricci — Genotype of Capriccio IX 274

90 Ada + Babbage − Capricci — Genotype of Capriccio X 276

91 Ada + Babbage − Capricci — Genotype of Capriccio XI 277

92 Ada + Babbage − Capricci — Genotype of Capriccio XII 279

93 Ada + Babbage − Capricci — Genotype of Capriccio XIII 281

94 Ada + Babbage − Capricci — Genotype of Capriccio XIV 283

95 Ada + Babbage − Capricci — Genotype of Capriccio XV 284

96 Ada + Babbage − Capricci — Genotype of Capriccio XVI 286

97 Microcontrapunctus — Csound instrument to synthesize microsounds 290

98 Decoded genotype for synthesis of microsounds 304

99 Rudepoema na penumbra — SuperCollider receiving GenoMus data via OSC 343

Introduction

“ Grammars for Music?

Then there is music. This is a domain that you might suppose,
on first thought, would lend itself admirably to being codified in. An
ATN-grammar,1 or some such program. [...] There is no reference to things
"out there" in the sounds of music; there is just pure syntax. [...] But
wait. Something is wrong in this analysis. Why is some music so much
deeper and more beautiful than other music? It is because form, in mu-
sic, is expressive—expressive to some strange subconscious regions of our
minds. [...] No, great music will not come out of such an easy formalism as
an ATN-grammar. [...] the grammar will be defining not just musical struc-
tures, but the entire structures of the mind of a beholder. The "grammar"
will be a full grammar of thought-not just a grammar of music.

Douglas R. Hofstadter [66, p. 626]

The individual impulse to create new music as an expressive necessity is difficult to
trace. I consider myself omnivorous in terms of genres, styles, or cultures; I equally enjoy
mainstream hits and extreme experimental works, provided I perceive authenticity in them
(a completely subjective sensation, nonetheless). However, when it comes to composing
my own music, I feel that my interests are focused on certain aspects far from the central
area of the socially shared concept of what music is.

In my case, I can explain what interests me when composing music. While my motiva-
tions may differ significantly from the typical ones, they do resonate strongly with those of

1Abbreviation for augmented transition networks, a concept that expands upon the idea of RTR (recursive
transition networks), related to the set of rules studied by generative grammar. ATNs are networks composed
of RTRs that refer to each other, which means their level of complexity and self-reference can become
enormously intricate.

1

Introduction

many other past and present figures, so I perceive myself as part of a well-defined stream,
whose musical orientation traces a trajectory that touches upon the following fundamental
questions.

Primarily, the exploration begins by attempting to deeply understand the underlying
mechanisms of musical composition for each style and how these devices acquire certain
almost semantic connotations in the co-evolution of musical creation and reception. How
do the bidirectional connections between emotions and musical language materialize? Are
there a priori universal elements in this hidden semantics of sound, or is it all an arbitrary
cultural product?

Another key aspect is the fascination with stretching these mechanisms to push the
style towards unusual sonic territories, with these underlying questions: How far can
music be taken without breaking it? What emotional triggers can be reached?

Finally, with the advent of computation, these inquiries escalate to a new level where
experimentation can be taken much further. New questions arise: To what extent can the
process of musical creation be automated without losing the essence of artistic commu-
nication? How does the potential massification of automatic creative artifacts affect the
evolution of culture and composition techniques? How will artificial intelligence affect the
very concept of music in the future?

Programming is (meta)composing

Artistic creation, like almost any aspect of human nature, is a phenomenon with strong
coupling and feedback. What conditions must something fulfill to fit into the definition
of music? This definition is in constant redefinition, changing after each new item enters
the set. If we consider the entire spectrum of human musical productions, focusing on
the most adventurous and experimental approaches, we might conclude that anything can
potentially be considered music, because context is much more important than the sounds
themselves. It is inevitable to follow in the footsteps of Formaggio [55], and conclude that
music is whatever someone considers to be music:

L’arte è tutto ciò che gli uomini chiamano arte. Questa non è, come qualcuno
potrebbe credere, una semplice battuta d’entrata, ma, piuttosto, forse, l’unica definizione
accettabile e verificabile del concetto di arte.2

2Art is everything that people call art. This is not, as someone might believe, a simple opening remark, but
rather, perhaps, the only acceptable and verifiable definition of the concept of art. (Author’s translation)

2

Introduction

That tautological and recursive definition is not useful in computational terms. How-
ever, this thought is crucial to understand why the idea of considering a fitness function3

of a musical work without incorporating the entire background of its audience into the
equation is indeed naive.

Projecting this vision into a distant future, we might have to further expand the frame-
work and accept that music will be anything that some entity considers music. And that
music may encompass a range of frequencies and temporal scales inaccessible to human
perception, or contain information patterns beyond human cognition. And perhaps, by
forging a new connection with very old ideas, the truly relevant aspect is the synergy
between information and time.

For the reader of this doctoral thesis, these underlying matters can help situate the aes-
thetic foundations of this research: I am ultimately interested in discovering the very foun-
dations of music and how technology can delve into them, even creating new groundings
and paradigm shifts. And, of course, what emotions can be stirred within us by these new
developments.

The task of designing algorithms that generate music, or any other type of artistic pro-
cess, involves a multitude of decisions that carry an aesthetic vision. Every software, no
matter how open and flexible it may be, leaves an imprint on the outputs it produces. The
design of a framework like this is an actual creative act. This notion has been prevalent
from the beginning: programming is not composing, but it is about establishing frame-
works and spaces in which potential music exists. In this sense, programming becomes an
act of metacomposition. The unconscious decisions and assumptions made during prototy-
ping stem from aesthetic preconceptions of the music imagined by the programmer, with
far-reaching consequences.

Our perception of music depends on the interplay between temporal proportions, fre-
quencies, timbres, etc., whose patterns can be discerned through listening. These patterns
occur at very different temporal orders of magnitude. Figure 1 shows a hierarchy of
musical structures that can be analyzed and automated, spanning from the individual
components of each sound atom to the entire work, and beyond, considering groups of
compositions that can constitute a large corpus. Developing composition systems is a
complex task, particularly when aiming to encapsulate within their internal representation
the multidimensional reality of any musical object. From this starting point, my research
aims to delve into this thought of Roads [123, p. 54]:

3Especially in the context of genetic algorithms, an operation that accepts a potential solution as input and
returns a measurement of the solution’s quality regarding the addressed problem.

3

Introduction

Ultimately, the question is not whether music conforms to the structure of formal
grammars, but rather whether particular formal grammars can be designed which be
useful representations of certain compositions. Grammars with embedded procedures
can be powerful descriptive and expressive tools, but certainly, formal languages will
evolve, and in general, knowledge representations will grow more elegant.

Figure 1: Automation levels for symbolic music composition

Scope of the study

Among the multitude of studies about automatic composition, the particularity of this
research lies in its attempt to combine within a single model two different areas: on the
one hand, this investigation continues the old tradition of automatic music composition
systems, oriented toward the practical use of the composer, but at the same time seeks to
achieve a representation system that can seamlessly integrate with the newest machine
learning mechanisms. The challenge of this project is to combine efficiency in the abstract
compression of symbolic musical information with an interface expressive enough to
be used as a simple programming language. Essentially, this research aims to find the
intersection between these two paradigms and explore how they can learn from each
other.

One of the primary focuses of the project is to create a practical tool for augmented
creativity that enables composers to bypass their own biases and expand their expressive palette.

4

Introduction

The purpose is to achieve greater autonomy of the machine in making proposals and
maximize the openness of the latent music space.4 The aim is also to facilitate the project’s
future phases, centered around autonomous and self-evolving aesthetic evaluation, the
creation of a database of results that allows the system to learn from itself, as well as
integration with more complex deep learning systems. A robust architecture for musical
representation is essential to harness computational power for the recursive and open
grammars on which this research is based.

Another fundamental characteristic that has shaped the entire project is the dual repre-
sentation of symbolic music: one from a procedural metalevel and the other as abstract
numerical data with the simplest structure. At the heart of this research lies the concept
of modeling the composer’s creative process rather than the score. Prior to embarking on any
programming tasks, I explored numerous potential approaches to the challenge of esta-
blishing a musical metalanguage that could be as precise as the score it references while
also reflecting the processes that underlie it. These efforts leaned toward the paradigm of
functional programming.5

The subsequent step involved selecting the appropriate computational tools to create
the initial prototypes of the ideas that had been outlined on paper. Practical application
was another initial requirement. The author of this work is a composer with significant
experience in composing using technological means but with far fewer skills in computer
science. From this standpoint, it was believed that the most valuable contributions would
arise from the experience of using these tools. Indeed, the development methodology has
been based on an iterative cycle of programming prototypes and composing pieces with
them, revealing the strengths and weaknesses of each system version, ultimately shaping
its development.

Many modern approaches to artificial intelligence applied to the automatic composition
of music are modeled using scores as their data source. The effectiveness of neural nets
favors this kind of experiments. In my case, I generate data from randomness, which

4In the context of audio signal processing or machine learning applied to music, it refers to an abstract
or multidimensional representation where musical features are encoded in a non-explicit but meaningful
manner for certain algorithms or models. It represents the set of all possible numerical vectors capturing
fundamental musical characteristics such as tonality, rhythm, harmony, or structure in a compressed and
abstract way, allowing for efficient manipulation, exploration, or generation of music.

5Paradigm based on the definition of functions whose behavior is closed and independent of the program
in which they are embedded. The result of their evaluation does not depend on previous states of the
main program, and their output does not create side effects in it. A program written using this technique
can practically be considered as a set of abstract mathematical functions that operate on a specific number
and type of variables and produce a well-defined output. An advantage of this concept is that, once the
functions are defined, it is relatively straightforward to port them to any language that supports functional
programming.

5

Introduction

is selected and refined through human supervision or following a fitness function that
assesses specific characteristics. Furthermore, my focus is not solely on the score but
primarily on the processes through which the musical text can be deconstructed. This
sort of reverse engineering involves applying functional programming and a library of
procedures that enable the metaprogramming of these scores. Due to its relative ease of
implementation, a custom genetic algorithm6 is employed for selecting results. However,
despite the widespread influence of bioinspiration across various subprocesses of the
model I present, genetic algorithms are just one possible approach to handling the data.
The aspiration is to establish a representation system basic enough to adapt to almost any
other machine learning algorithm, such as neural networks with different architectures or
completely newer future paradigms.

I considered the study of McCormack [96] regarding the difficulties of tuning evo-
lutionary algorithms, as well as the comprehensive surveys that study a large number
of similar projects. In the usual taxonomy of AI methods applied to music composition,
my model can be classified in the domain of evolutionary algorithms applied to grammars.
Fernández and Vico’s exhaustive survey [53] concludes with some remarks regarding the
important topic of encoding data to work with evo-devo7 systems. After identifying the
problem of scalability, due to the enormous amount of information that a musical work
can contain, they consider that many systems have addressed this bottleneck using indi-
rect encodings that compress musical information by encapsulating the list of instructions
needed to recreate a piece, but these encoding methods need to be highly improved and
optimized. Otherwise, a good toy model can become intractable when scaled to handle
and produce real pieces of music.

My research is devoted to this issue and looks for strategies to compress and simplify
as much as possible the procedural information while maintaining an interchangeable
readable counterpart of this information. I conceive this indirect encoding of music as
the core of my framework: what must be learned by an AI engine8 is precisely this abstract
representation of the composition techniques used in the creative process.

6The different types of genetic algorithms share a fundamental concept: formulating a problem in such a way
that its possible solutions can be represented with some type of chromosome of data, and from there applying
a cycle of selection, crossover, and mutation.

7In biology, an informal way to refer to evolutionary development, an area of study that seeks to infer the
developmental stages of an organism. In the context of genetic algorithms, it relates to generative systems
that exhibit an evolution from initial conditions to reach a specific state.

8Beyond metaprogramming itself, some researchers focus on the even more fundamental plane of artificial
metalearning [141]. With the achievement of algorithms that learn to learn, multiple alternative systems of
data representation could become important in machine-driven scientific discovery.

6

Introduction

With all this in mind, I outlined all the desired characteristics that my model must
fulfill. All these features can be condensed into these eight facets:

Modularity: based on a very simple syntax. This should allow the recombination of processes
in the most open manner possible, expanding the search space and promoting new
and unexpected recombination of subprocesses.

Compactness: maximal compression of procedural information. In the encoded counterpart
of the processes, a representation system must be possible that reduces complex
functional structures to simple sequences of values.

Isomorphism: same structure for all encoded entities. The representation system must allow
associating the same type of basic data structure to relate inputs and outputs, that
is, programs and results of their evaluation.

Extensibility: subsets and supersets of the grammar easily handled. The architecture must be
so simple that it allows adding (or limiting) functions with new processes smoothly.

Readability: both abstract and human-readable formats interchangeable. A coding and deco-
ding system is needed to work simultaneously with a programming language and
with numerical vectors, and the transformation between both needs to be reliable,
secure, and efficient in terms of information compression.

Repeatability: same initial conditions always generate the same output. This is an evident
condition, but it will require delicate design decisions to not limit modularity and
extensibility.

Self-referenceable: support for on internal autoreferences. This is essential for representing
many basic formal structures based on repetition and variation, and also for many
processes in algorithmic music that require recursion.

Versatility: applicable to other contexts and domains. The level of abstraction should make
it transferable to other fields. As a generative system that handles simultaneous
sequences of events in time, with arbitrarily complex information patterns, it can
be applied to other fields such as video synthesis, remote lighting control, motion
control, etc. Multimedia art is one of the working horizons of this research.

GenoMus is the name of the tool I have developed as a practical realization of this con-
ceptual approach. The name encapsulates the expression genome of music and emphasizes
the goal of decoding the underlying processes of musical composition in a way that can be
sequenced, akin to applying analogs to genetic engineering: enabling us to learn, analyze,
and synthesize new music based on previous knowledge.

7

Introduction

Hypothesis and research objectives

In summary, this research aims to gain insight into this hypothesis:

It is possible to create a procedural representation of music, both as a highly abstract
and compressed format optimized for machine learning and as a simple human-
readable grammar. This representation can be valuable as the foundation for diffe-
rent systems for music creation and analysis.

To test this concept, and given the goal of approaching the problem by combining
theoretical formalization with real artistic usage, it has been necessary to accomplish a
series of objectives.

O1 ● Design a coding system for symbolic musical processes and generated musical
pieces of the utmost simplicity.

The initial goal was reducing both representations of underlying compositional
techniques and symbolic music outputs to a one-dimensional vector of normalized
values. This simple encoding had to be independent of the complexity of the pro-
cesses or the generated piece. A simple note or a long work with many voices, notes,
and parameters had to be represented as a single decodable stream of floats.

Although this representation system can be used to encode conventional music,
its design must emphasize the aesthetic framework of experimental creation. There-
fore, this encoding must be capable of representing arbitrarily complex combinations
of generative processes, recursive algorithms, etc.

O2 ● Create a decoded counterpart of processes and music that is readable and functions
in practice as a functional programming language with equally reduced syntax.

Equally important to the pure numerical representation, there must be a readable
form for both the declaration and transformation of musical events, as well as the
resulting symbolic representation of a music score. The readable form should be
editable and executable as an extremely simple programming language.

8

Introduction

O3 ● Implement a tool for technical testing and real artistic use of the model, allowing
visualization and playback of generated music, as well as enabling export to va-
rious standard formats for integration into diverse music production environ-
ments.

As an initial prerequisite of the research, I aim to enable close collaboration
and intervention of the human user with the generative algorithm. The starting
point for the development of a composition can either be a set of ideas proposed by
the machine or a manually coded fragment for transformation. In either case, the
interface should facilitate this active collaboration throughout the process.

This tool should be manageable for both expert users with specific knowledge of
musical composition and those without any prior knowledge. In the latter case, the
user interface should be straightforward enough to guide the process of evolving and
transforming musical material with basic operations that are capable of capturing
personal preferences.

Finally, the produced fragments should be easily exportable to other musical
production environments, such as virtual instruments, music notation editors, sound
synthesis software, other encoding formats for music scores, etc.

O4 ● Compose and present musical works created at various stages of the development
process in a standardized environment with a non-specific audience.

The use of GenoMus in human-machine collaborative creation should expand
the user’s expressive palette. This form of computer-assisted or augmented creativity
must, in some way, bridge personal aesthetic biases and technical limitations through
exposure to a wide array of diverse materials suggested by the system.

O5 ● Publish the necessary documentation for the model to be used, adapted, and ex-
tended by new users and incorporated as a resource in machine learning pipelines.

The true potential of this proof of concept can only be realized through a commu-
nity of users who interact with the tool from various stylistic, aesthetic, and technical
approaches. Gaining access to individuals (or other algorithms) with varying degrees
of musical expertise is, therefore, an essential objective for evaluating the validity of
my proposal.

9

Introduction

The ultimate goal of this research is not to create a standalone and closed tool. Beyond
its direct use restricted to the specialized field of music creation, the design of this multiple
representation system is aimed at its integration into more sophisticated present and future
multimodal systems, capable of processing symbolic information.

In the current context of rapidly evolving deep learning architectures, I believe that
it makes the most sense to contribute my musical expertise towards alternative formali-
zations of musical representation, optimized for these machine learning models, thereby
enriching their internal representations and autonomous creative capabilities. Most impor-
tantly, these contributions should facilitate interaction with human interlocutors who can
further develop their abilities and expand their artistic imagination in new directions.

Interactive experimental setup

During the development iterations of the core algorithm, numerous technical alterna-
tives have been tested to create an environment that combines simplicity in integrating
new functionalities with the ability to see and hear the results of the generative system. The
experimental setup that has proven to be the most practical, and has ultimately been used
to create a highly responsive and flexible user interface, combines three key elements:

● Max patch as interface

Max9 (formerly MaxMSP) is a widely used software for sound processing and
multimedia art. It is a de facto standard in work oriented towards experimental
music and offers an extensive range of objects and libraries that provide astounding
versatility for interconnecting software and hardware elements.

The user interface programmed in Max facilitates the execution of all requests to
the core code in a highly simplified manner. It provides the ability to visualize and
edit the code generated for each musical piece, as well as to represent the results of
internal operations in various ways, translating them into interactive real-time scores,
displaying both the data and metadata of musical pieces, graphically visualizing
encoded data, and more.

9Commercial software developed and distributed by Cycling ’74. It can be found at https://cycling74.com/
products/max.

10

https://cycling74.com/products/max
https://cycling74.com/products/max

Introduction

● Core algorithm contained in a Node.js JavaScript file

The initial iterations of the core algorithm were programmed in plain JavaScript.
Communication with Max could only be achieved in a complicated manner, and
due to the characteristics of the Max implementation, the patch would freeze during
the execution of a function call. Although this wasn’t problematic at this stage of
development, it would have been an issue when it came to seamlessly integrating it
with other Max objects, especially in the case of live-coding,10 where audio, MIDI,
and code writing need to run flawlessly in parallel without interruptions.

Starting with version 8, released in 2018, Max integrated a new bridge object
with Node.js, enabling the execution and data communication between patches and
JavaScript using the ECMA 6 standard. This marked a significant boost for the use of
JavaScript in the final prototype. Apart from being much faster, benefiting from the
functional possibilities and syntactical improvements of the new standard, and being
able to call external libraries, since then, internal processes of the core algorithm
could run without affecting the host patch’s performance.

● Package bach for real-time interaction with generated music

The Max extension provided by the bach11 package greatly enhances the mo-
nitoring and post-production possibilities for music algorithmically generated. In
addition to being able to visualize and execute real-time modifications, hosting the
results of operations within the Max environment allows for the use of generated
sequences in many different use cases, such as sound synthesis, real-time effects ma-
nipulation, and data remapping for multi-channel MIDI output or raw data through
OSC,12 among other possibilities.

The bach package is designed to streamline the display of musical notation in
Max. It also includes an extensive library of functions for algorithmic composition
and analysis. I have used it solely for visualization, playback, and score export. Once
the outputs of the prototype are incorporated into a bach.roll object, it becomes
possible to continue adding new layers of manipulation with it using the numerous
features of this powerful tool.

10Live-coding in music refers to the practice of writing and modifying computer code in real-time to gen-
erate music. It’s a form of performance where the musician, often referred to as a coder or live coder,
uses programming languages to script and manipulate sounds live before an audience. The improvised
code typically controls the synthesis, processing, and arrangement of sounds. Live-coding can be visually
engaging too, as the audience may see the direct translation of code into music.

11Package designed by Agostini and Ghisi [3], available at https://www.bachproject.net; bach is a recursive
acronym for bach automated composer’s helper.

12Open Sound Control. Due to its flexibility and modern architecture, it is a good alternative to MIDI.

11

https://www.bachproject.net

Introduction

Figure 2 illustrates the relationships between the internal processes of the core algo-
rithm, the user interface, and the transmission of the generated music to external appli-
cations. While the generative processes may take some time, interactions typically occur
within milliseconds, and the most complex processes take at most a few seconds to com-
plete. Consequently, it is an environment that operates almost in real time.

Figure 2: Scheme of development and experimental setup. The core code of the model is represented in
light orange, which runs within a GenoMus patch environment in Max, depicted in blue. This
environment contains various modules for communication and interaction with the user interface.
The entire Max environment is represented in a lighter blue, which can run multiple patches in
parallel that can communicate with GenoMus. Outside this environment, third-party software and
data output to files of different formats.

12

Introduction

What this research is not about

My work, while situated within the active field of applying artificial intelligence tech-
niques to symbolic music creation, has certain peculiarities that distinguish it from the
standard research in this area, and are worth noting.

The proposed model is not aligned with most current efforts in creating systems capa-
ble of replicating music with well-defined styles. The enormous commercial potential of
generative art tools encourages most current studies to focus on assimilating vast amounts
of musical repertoire to achieve original creations that are well-suited to the most success-
ful existing genres and subgenres in the industry.13

This is not the target of this research. My proposal lies on the almost opposite side
of the spectrum of music creation. I do not aim to replicate music whose structural foun-
dations and rules have already been extensively studied and systematized by modern
musicology, although my model can equally represent it. By design, the goal is to facilitate
the exploration of new combinations of elementary techniques that can give rise to highly
original and innovative music. However, it is also possible to steer the evolution of results
towards more common patterns.

This research is rooted in the tradition of composers who, from the early days of com-
puting, began exploring the possibilities of computation to expand and enhance their
arsenal of expressive resources. As a new twist in this tradition, my model is oriented
towards achieving a seamless integration of diverse traditional methods of automatic com-
position —such as the creation of grammars, various systems of algorithmic composition,
or expert system programming— but optimized to harness the capabilities of modern
machine learning methods.

Therefore, this proposal is not simply another specific computer-assisted composition
system. It operates on a more fundamental level of abstraction, allowing each user to
configure the compositional procedures they wish to employ, whether deliberately limited
or highly eclectic, in a collaborative process with the tool. It would be more accurate to
define GenoMus as a draft of an automatic composition metasystem.

Despite the code examples, what I present is not a programming language in the
strict sense. While in the current implementation of the proposal, musical pieces are
programmed using a restricted subset of JavaScript functions, the key aspect is the type
of symbolic and encoded data architecture, portable to any other language that may be

13A good example of the emerging trends in this multimodal generative approach is MusicLM [1], which
allows for the generation of audio from natural language prompts.

13

Introduction

more appropriate or efficient in the future. The syntax I use is close to the functional
paradigm, but it is impure, as there are a series of indispensable side effects for certain basic
functions of the overall algorithm. Although the user interface allows for programming
pieces from scratch, the method of creation and transformation is preferably done through
metaprogramming techniques that autonomously generate code.

The simplest symbolic output format to handle in GenoMus is the MIDI file. However,
the representation of music is not limited to the score but accommodates the nuances
and deviations typical of a performance. This is particularly important when the out-
come involves sound synthesis, virtual instruments, or live manipulation of other software.
GenoMus does not generate traditional scores; instead, it produces relatively complex
structures that, if intended for performance by human musicians, require adaptation to a
standard notation, often omitting many small nuances for readability.

Last but not least, it’s worth noting that, much like with manually composed experi-
mental music, the evaluation of results is highly subjective and doesn’t lend itself well
to typical tests seen in many automatic composition studies. As an alternative valida-
tion, I offer a collection of pieces that have been composed in part or entirely using this
model. These pieces have been successfully premiered and received positively by a general
audience in standard contexts of artistic performances.

Thesis structure and reading recommendations

This doctoral thesis begins with this very introduction, which delimits the personal
motivations and the scientific scope of the research. Faced with such a wide array of ap-
proaches to automatic music composition and representation systems, the technical and
conceptual elements in which contributions are sought are explicitly defined. After formu-
lating this approach as a formal hypothesis, a series of specific objectives are detailed,
which must be achieved to provide at least a limited response to the central question.
Later, the tools and experimental setup used for prototyping and testing the model are
described.

Once the research field has been defined, Chapter 1 briefly analyzes the history and
state of the art in computer-assisted composition and artificial musical creativity. Starting
from some general but important considerations to maintain perspective on the aesthetic
and philosophical implications of machine-generated art, a brief historical overview of the
relationships between computer science and musical composition is provided. Some of

14

Introduction

the key topics addressed include bio-inspired composition strategies, musical grammars,
metaprogramming, and current trends in deep learning applied to music generation.

The abstract formalization of the model’s conceptual framework —an updated version
of that presented in a previous article [87]— is presented in Chapter 2. It begins by
specifying how the biological metaphor exists behind the model. Then, the necessary
elements that make up the system are analyzed. Some of the key concepts addressed
include encoding and decoding mechanisms and the germinal vector as a determinant of a
decision tree designed to enable the retrotranscription mechanism, which is central to the
model. In particular, the constructs referred to as genotypes and phenotypes, ubiquitous in
the literature of bioinspired algorithms, are precisely defined.

Putting into practice everything previously analyzed, the following chapters demons-
trate the practical implementation of GenoMus, showing the mechanisms required to
convert the theoretical model into a functional system with a manageable user interface.

Chapter 3 shows the architecture of the necessary data structures, such as the specimen,
the genotype function, the mapping strategies for parametric data, etc.

In turn, Chapter 4 reviews all the main types of genotype functions, such as iden-
tity functions, those that control formal structures, and random processes, among others.
Important topics for algorithmic compositions, such as autoreference and generative pro-
cesses, are also presented. This chapter contains minimal examples that illustrate how
musical fragments are constructed at various levels of complexity.

The important topic of genotype and phenotype encoding and decoding is addressed
in Chapter 5. In particular, the mechanism of retrotranscription is unraveled in detail, as a
fundamental piece of the model. A method for graphically representing long numerical
structures is also proposed to facilitate understanding, debugging, and traceability of the
processes occurring at the most abstract level.

Building upon these prior foundations, Chapter 6 analyzes the implementation of the
system’s core algorithms: those enabling genotype metaprogramming and phenotype
rendering.

Chapter 7 escalates to a higher level of complexity to introduce the entire mechanism as
mentioned earlier within an evolutionary algorithm that creates, selects, and transforms
populations of specimens, both with human supervision and unsupervised.

Concluding this central block of work, Chapter 8 demonstrates the utility of the model
as a tool for analysis and incorporation of new processes into the function library.

15

Introduction

The most relevant results are compiled in Chapter 9. It discusses the iterative develop-
ment process of the system, explaining how after each real application of the system to
an actual artistic production, the needs, weaknesses, and potential of the main code have
been identified. The text does not delve deeply into either the software or the musical
compositions created. For those interested, technical and artistic details of the composition
processes of these works can be found in the Appendices.

In contrast, Chapter 10 adopts a broader perspective, drawing conclusions based on
the system’s capabilities as demonstrated in artistic application experiments. The text
encompasses specific aspects, both conceptual and practical, that introduce innovation
to the field of computer-assisted composition. Chapter 11 is the Spanish version of the
previous one.

Appendix A concisely displays the user interface of the GenoMus implementation
in Max. It shows the main operating panels of the software and its most important
functionalities.

Appendix B is aimed at readers with a more specialized interest in music and provides
details of the development of all artistic projects that have marked the iterative evolu-
tion of GenoMus. It is highly recommended to complement the reading of this visual
documentation with the audio and videos from the corresponding links, as this auditory
information is truly relevant as the tangible final product of this research.

To enhance the readability of code snippets, several conventions have been added to
the usual JavaScript syntax highlighting in the listings and the main text:

Genotype functions, such as sConcatS, which are the building blocks of the generated
music, are printed in bold magenta.

Core algorithm’s auxiliary functions, like indexDecGens, appear in bold bright orange.

In Appendix B, there are names of old functions from previous versions of the model
that are no longer available. These deprecated functions appear in pale blue, like in
combineArrays.

Despite their functional style, genotypes are not pure functional expressions and
require global variables, which are printed in red, such as defaultEvent.

For the remaining keywords within the core code, they are written simply as black
monospace, such as the label midipitchF.

Finally, executables expressions like s(v(e(nRnd(),mRnd(),aRnd(),iRnd()))) appear
with a light gray background, just like the code listings.

16

Introduction

Source code and software

This document is complemented by numerous musical examples, sheet music, code
fragments, graphics, and videos, hosted on the website https://genomus.dev, which are
not included here to avoid excessive length of the core academic text. It is strongly rec-
ommended to use the provided links to access this additional material, as it demonstrates
the practical outcome of this model, allowing a complete understanding of the theoretical-
practical profile of this project. This website, as the official project platform, will guaran-
tee the availability of these additional materials and the continuity of the corresponding
URLs.

The source code for GenoMus, as well as the Max patch that enables user interaction
with the generated music, can be found at https://genomus.dev/thesis. The program
version available at this link corresponds to the one documented in this thesis and will not
be altered to maintain consistency with this document.

The latest version of GenoMus can be found at https://genomus.dev/download, along
with some instructions for its execution within the Max environment. Having previously
engaged with the tool and the code from the examples is perhaps the best preparation
before reading this thesis. The reproduction of some of the examples from the text and
the ability to test some variations will enable the reader to quickly grasp the concepts
presented.

The requirements to run GenoMus are as follows:

Install Max 8 (the runtime version that remains operational after the 30-day trial
period is sufficient to run the program).

Install the bach package from within Max.

The GenoMus folder contains the following items:

GenoMus_1-00.js, the source code referred to in this text.

GenoMus_1-00.maxpat, the user interface executable in Max.

Additionally, the folders sessions, specimens, visualizations, and midi are used by
the script to store the results that a user may wish to save.

17

https://genomus.dev
https://genomus.dev/thesis
https://genomus.dev/download

1
Background

“ “Quiero construir la música como está construido un árbol”, era una
de las afirmaciones recurrentes de Guerrero. Lo que más le fascinaba era
la idea de hacer respirar a la música la rugosidad propia de la materia
viva, la complejidad de la pulsación orgánica. Su objetivo era el de crear
una música perfectamente estructurada y al mismo tiempo perfectamente
natural e inteligible; hacer del sonido un elemento en estrecha simbiosis
con la materia, con sus formas y con sus leyes dinámicas. Extender los
principios fractales a la música se convertía para él en la manera de bucear
en la materia única que une el sonido y la sustancia profunda del mundo.
[...] “Si miras al campo estás viendo música, las mismas leyes que lo rigen
todo”. En la naturaleza como en la música Guerrero sentía la respiración
de un único orden cuya raíz era matemática.14

Stefano Russomanno [129, p. 105]

Addressing the state of the art in any computer-assisted composition (CAC) research
quickly becomes unwieldy due to the almost daily emergence of new technical approaches,
artistic projects, and academic papers. A narrowly focused enumeration of currently domi-
nant lines of work risks becoming obsolete quickly and losing perspective regarding the
broader currents in contemporary musical creation. This chapter will attempt to provide

14 “I want to build music the way a tree is built”, was one of Guerrero’s recurring statements. What fascinated
him the most was the idea of infusing music with the roughness inherent in living matter, the complexity
of organic pulsation. His goal was to create music that was perfectly structured while also being perfectly
natural and intelligible; to make sound an element in close symbiosis with matter, its forms, and its dynamic
laws. Extending fractal principles to music became his way of delving into the unique essence that binds
sound and the profound substance of the world. [...] “If you look at the countryside, you’re seeing music,
the same laws that govern everything.” In nature, as in music, Guerrero felt the breath of a single order
rooted in mathematics. (Author’s translation)

18

Background

some historical insight and clarify the main paradigms of recent decades, with empha-
sis on those directly related to the subject of this study. My research primarily aims to
formalize the symbolic representation of music and engage in open stylistic exploration.
Consequently, I will not dwell extensively on works focused on imitating well-defined gen-
res; rather, the focus will be on projects that leverage machine learning to expand existing
musical languages and discover new styles and techniques for organizing sound.

First and foremost, it should be noted that CAC can be situated on a spectrum ranging
from purely theoretical approaches to practical application without underlying reflection
or analysis. In the production of contemporary composers who employ algorithmic pro-
cesses in their creative work, it is often impossible to separate the musical composition
from the research behind it. On many occasions, it seems that a single piece of music must
serve as proof of a creative hypothesis, making it challenging to assess the potential of that
specific CAC technique, especially considering that we don’t have more examples. The
quality of these compositions is likely to be more influenced by the talent of the composer
using them rather than the merits of the specific system being advocated.15

Meyer [99, p. 31] clearly distinguishes these two facets of musical creation: the one
related to the configuration of the language and the one regarding its effective use:

The distinction between rules and strategies helps, I think, to clarify the concept
of originality, as well as its correlative, creativity. For it suggests that two somewhat
different sorts of originality need to be recognized. The first involves the invention of
new rules. [...] The second sort of originality, on the level of strategy, does not involve
changing the rules but discerning new strategies for realizing the rules.

In the practice of many experimental composers, the creation of systems and their
application to the score often merge, which complicates the evaluation and critique of
these musical products. Each new CAC system typically underpins its propositions with
scientific arguments. There exists some confusion between scientific research criteria in
any aspect of musical practice16 and the application of tools from physics or mathematics
to creative work. However, it is important not to lose sight of the fundamental difference
between the ultimate objective of the scientific and artistic methods: while science seeks
to find the universal that unifies seemingly different phenomena, art looks for unique cases
within the various possibilities of each technique or aesthetic. In other words, science deals
15The history of the reception and application of Schönberg’s serial method illustrates how systems proposed

as alternatives to conventional methods become inherently linked to the works and composers. The task
of promoting and defending each new musical technique entails the creation of a tradition and, in a way,
a biased and directed perception of their true expressive possibilities. This conflicts with the universality
aspirations that some of these systems aim to achieve.

16An encyclopedic work that employs logical, topological, and algebraic analysis in nearly all aspects of music,
including the most intuitive ones like phrasing or rubato, can be found in Mazzola’s series. [95, 92]

19

Background
1.1. Artificial creativity or creative artifice?

with the common that unifies the diverse, and art with the special that stands out among
the common.17 This thinking advises considering each new CAC technique as part of the
creative world of each composer, rather than as new attempts to reach a definitive system
that should be embraced by all. In the realm of art, knowledge of other artists’ production
primarily serves as a stimulus to personal creativity, regardless of the useful tools and
ideas one may adopt.

1.1. Artificial creativity or creative artifice?

The arguments frequently revisited in any debate about the true potential of artificial
intelligence become more pronounced when focusing on artificial creativity. A thorough
examination of artificiality often leads to contradictions and the need to redefine concepts.
The semantics of the term itself embody this paradox: on one hand, artificial is defined as
made by human hand or skill, or produced by human ingenuity, implying that the artificial is
inherently creative; but at the same time, we describe as artificial what is not natural, false,
or even worse when referring to the artistic, artificially contrived.

This contradiction stems from opposing conceptions of the human essence: what is at
stake is the very definition of humans, either as something natural —with all its conse-
quences— or as a separate entity in some aspects. In other words, AI, and even more so
artificial creativity, supports the argument that human intelligence is not above the physical
world. Scientific progress has been eroding everything that humanity has kept as a privi-
lege over the rest of the universe. The evidence that processes of extraordinary complexity
can arise from astonishingly simple mechanisms is undermining the last stronghold of
human superiority, reducing intelligence and consciousness themselves to a natural phe-
nomenon. Wolfram [156], in a book that became very popular in the circles of algorithmic
composition, stated:

Yet in Western thought, there is still a strong belief that there must be something
fundamentally special about us. And nowadays the most common assumption is that
it must have to do with the level of intelligence or complexity that we exhibit. But [...]
the Principle of Computational Equivalence now makes the fairly dramatic statement
that even in these ways there is nothing fundamentally special about us.

That’s why just the possibility of the existence of artificial creative entities produces
both suspicion and fascination. Present approaches to AI tend to be concentrated in specific
areas: from modeling trivial behaviors to the automatic formulation of new mathematical

17This thought is taken from a live video lesson by Miller Puckette.

20

Background
1.2. The role of the machine in the evolution of style

theorems, but the current trend is that multimodal large language models (LLMs) will rely
on specific modules to enhance their capabilities in particular areas such as musical com-
position. The coalescence and synergy of hyperspecialized layers, coordinated by LLMs
capable of having a good overall context in communication with the user, seem to mark
the path toward true artificial creativity.

In conjunction with this, the modeling of human reasoning is exerting a significant
influence on our understanding of what thought and consciousness truly entail. Some
studies on brain functions [5] are more focused on analyzing typical information theory
problems than on physiology. Understanding the emergence of neural processes in net-
works can be equally important as delving into the specific details of their biochemical
functioning. This convergence between cybernetics and neurobiology is likely indicative
that we are approaching a point where it will become evident that research across all
AI fields, including artificial creativity, essentially involves inquiries into what defines us
as humans.

1.2. The role of the machine in the evolution of style

The idea of finding a recipe that automatically composes unique masterpieces equally
contains a contradiction at its core. The aesthetic value attributed to a musical piece is
not solely explained by the score but greatly depends on the context of its creation and
reception. Furthermore, there are brilliant compositions that formally exhibit identical
stylistic characteristics to others that are mediocre, so a perfect model would require
something more than an exhaustive analytical description of a specific musical language.
Moreover, many key works from each historical period tend to reside on the edges of
their systems, often scratching unforeseen relationships and stretching established logic.
Frequently, the studies that best understand and explain a particular musical style appear
once that system has lost its relevance.18

Accepting the idea that the relevance and uniqueness of a great composer’s style often
reside in details that elude descriptive analysis, how can CAC assume a truly creative role?
A broad perspective on the evolution of style over the past centuries in Western music
may elucidate this issue. In very general terms, we can distinguish several stages:

18The classical pedagogical treaties by Schönberg, which demonstrate such profound knowledge of tonality,
were written by the composer after he had opened the doors to radical and systematic atonality. His famous
Harmonielehre [138] dates back to 1922; a decade later, he presented his serial method for the first time
in private.

21

Background
1.2. The role of the machine in the evolution of style

By the 18th century, the tonal system19 had completely crystallized in Europe. Apart
from certain stylistic peculiarities, it can be affirmed that all composers shared a
common idiom, which often remained very stable throughout their entire production.

During the 19th century, individualities tend to become increasingly marked. Com-
posers aspire for their style to be recognizable, and although there are noticeable
transformations in the language of each composer, individual styles remain relatively
identifiable and remain well-rooted in the common practice of tonality.

The crisis of the tonal system in the early 20th century marks a significant turning
point. In physical terms, we entered a phase of turbulence. Multiple alternatives
to tonality emerge, and various, even opposing, musical techniques rapidly suc-
ceed one another. During these decades, we begin to see composers embarking on
artistic trajectories that demonstrate substantial transformations in their language.
Simultaneously, composers gather into stylistic movements that are in continuous
controversy.

By the mid-20th century, the divergence of styles had become so extreme that, in
many cases, each creator could virtually represent a style of their own. The postula-
tion of personal methods started to become widespread.20 Maconie [90] emphasizes
that there is an interest in probing and reinventing all language mechanisms, both for
analysis and synthesis. Much of the progressive music of the 20th century aspires to
eliminate the human aspect to approach a musical and mental organization situated
beyond the scope of ordinary pattern recognition and memory.

During the 1950s and 60s, electronic music and the beginnings of digital audio
had a significant impact on some composers. The brief engagement of Ligeti, for
example, with electronic music, led to profound changes in his approach to sound
and texture [78]. Analog writing styles like spectralism and stochastic music began
to rely on technological innovations as tools.

In recent years, the rise of interactivity, the enormous impact of digitization, and the
ubiquity of computers are redefining many concepts about what musical creation is.
Di Scipio [45] has conducted an extensive study on the consequences of information
technologies in the new relationships established between creators and audiences.
At this moment of saturation in the possibilities of compositional language, extremes

19Also known as tonality, it has been the predominant musical composition technique in Western music for
centuries. It is based on a tonal center that dominates the hierarchy of tones, melodies, chords, and formal
structures. Everything is structured through tonal functions that create tension and release.

20Messiaen [98] in France, Hindemith [62] in Germany, or Barce [31] in Spain, are examples of composers
with their own composition method explicitly formulated.

22

Background
1.3. Trends in CAC

of writing and instrumental resources are being explored. Another approach is the
dialogue and re-signification of references to earlier styles, which Wilson [155] in-
terestingly reviews. It is a moment in which musical language has already been
taken to its extremes, and experimentation is occurring in other fields such as real-
time sound transformation, multimedia interdisciplinarity, and the blending of styles,
blurring the boundaries between popular and creative music. Enabling new haptic
interfaces [74], based on imagery and movement [14], or even on brain activity [105].

There has been a substantial shift in the awareness of style: if previously musical
grammar emerged from a slow collective process, shaped by the interaction between
musicians and the audience, from the early 20th century onwards, we find that sometimes
new musical systems are formulated a priori, and musical compositions are presented as
demonstrations of their validity.

Simultaneously, there is a growing interest in the theorization of language, which taken
to the extreme tends towards the point where each new work is the enunciation of a
unique style; each musical piece becomes a new —and sometimes ephemeral— definition
of music. There is a strong interest in understanding the internal mechanisms of each
musical grammar. The work of many current composers takes place at a metamusical level:
it is no longer so much about placing notes on the staff as it is about specifying the rules
(or the absence of them) that will organize those sounds. This focus on processes directly
leads to the use of information technologies. Therefore, consciously or unconsciously, CAC
is a form of musical creation that directly impacts the mechanisms that shape aesthetics.

1.3. Trends in CAC

Many musicologists have claimed that the aesthetics and techniques of works from a his-
torical period reflect the prevailing scientific theories of that time. Longair [80] has pointed
out that the convergence in the early decades of the 20th century between the collapse of
the tonal system and the scientific revolutions in physics, mathematics, and other fields
does not appear coincidental. These reflections began to take place consciously.

Decades later, as automated computing became available in research centers, a certain
sector of composers eagerly embraced each new mathematical or physical concept to
explore it as a means of producing musical structures or acoustic signals.21 The availability
of personal computers exponentially accelerated this trend.

21In Spain, it is paradigmatic the interesting space of fruitful exchange between artists and scientists from vari-
ous disciplines in the 60s and 70s, centered around the Centro de Cálculo de la Universidad de Madrid [81].

23

Background
1.4. Trends in CAC

In the field of composition, various trends linked to techniques such as stochastic
analysis, Markov chains [124], game theory, fractal geometry, grammar creation, different
aspects of chaos theory, cellular automata, neural networks, Bayesian networks, etc., can
be traced. The contemporary composer has an arsenal of tools available for organizing
sound material. Many of these procedures involve significant computation, making com-
puter assistance essential. This marks the beginning of what is referred to as algorithmic
music.22

Koenig was one of the pioneers in exploring these possibilities, who, in addition to the
practical use itself, highlighted deeper implications of computing in composition. In the
description of his Project 1, Koenig discarded the label of CAC, preferring the expression
“composition-theoretical investigation”. In the article [73] where he describes these pro-
cedures in the 60s, he shows his awareness that the task of programming has first-order
stylistic causes and consequences:

The program is seen as a composer’s tool for reflecting the compositional process in
music (but not only music) empirically, and for developing a personal theory of the
composer’s process.

Various fundamental lines can be appreciated in these compositional applications of
computing. Coexisting with analogical composition techniques, which remain fully rele-
vant, a variety of diverse digital tools are now being added. Miranda [104] has compiled
many of these approaches. In recent studies, Hernández-Oliván and Beltrán [58, 59] assert
that, despite progress, in general, sufficient quality in the generation of musical material
has not yet been achieved, and there is a lack of coherence in the macroform. Other me-
thods to CAC have emphasized semantic analysis and emotion techniques [44, 130] as a
control element for automatic musical flow in real-time.

Another variant of CAC is its application to human-machine co-improvisation. The
most well-known project, hosted by IRCAM, is OMax. Its purpose is to analyze real-
time MIDI or audio input to be able to engage in active dialogue improvisation with the
performer. Its architecture has been continuously updated [43], and it has recently been
reincarnated as the Somax 2 project [23, 54], becoming one of the leading programs in this
field.

22However, even though the term sounds progressive and modern, strictly speaking, the conservative and
traditional species counterpoint (a polyphonic composition technique based on rigid rules for voice lead-
ing still taught in academia) is indeed algorithmic music. This is evident when reading any manual on
the subject.

24

Background
1.4. Exploration of abstract mathematical processes

1.4. Exploration of abstract mathematical processes

It is possible to clearly distinguish between techniques that transcribe the output of
processes as discrete musical events, typically at the note level or temporal proportions,
from those that perform sound synthesis. The application of these techniques can range
from mere translation through linear applications and various mappings, to their use as
conceptual frameworks supporting a more symbolic manipulation.

Preferred algorithms tend to be those that exhibit complexity and richness of internal
subprocesses. Musicalization mostly occurs in decisions regarding how correspondences
are established between the algorithm’s output and its translation into scores or audio
signals. The value of this music does not arise from any supposed intrinsic musicality of
the algorithms but rather almost exclusively depends on the composer’s talent to transform
them. The work of Xenakis, as well as his writings [158], mark one of the paths to follow
in the 20th century.

The case of fractal music is particularly significant concerning the use and misuse that
has been made of mathematical devices in many cases. It is easy to find examples of music
that self-justifies through the mythification of its self-similar properties, ignoring that the
limitations of auditory perception and memory might render those patterns impercepti-
ble. Mandelbrot, one of the main discoverers of fractal geometry, considers that certain
deviations from standard geometric objects are implicit in works of art. It is significant
that in his seminal work on the fractality of the natural world, he includes some exam-
ples of defective figures [91, p. 347]; due to some glitch in the algorithm programming
that generated the graph, these erroneous images exhibit interesting deformations. When
placed alongside geometrically perfect figures, they immediately give the impression that
there is a creative personality making an altered and unique interpretation of reality.

These techniques have only been truly productive in the hands of composers for whom
these procedures have proven inspiring, while at the same time, they have not lost sight of
the laws governing human auditory perception. The work of Guerrero is a good example of
compositions that, even though their structures are based on fractals, are carefully balanced
considering real perceptual faculties without losing their strong, strict formal approach.
This ultimately ensures that beyond the sonification of complex internal relationships,
they remain essentially music. Besada [17] and Satué [133] are two composers who have
also theorized on these topics from their practical expertise. Simultaneously, it’s essential
not to forget that, from a certain perspective, all traditional tonal music holds evident
self-similarities in their formal structures and melodic-harmonic designs [125], not as a
result of any intricate contrivance, but rather as the natural consequence of applying the

25

Background
1.4. Exploration of abstract mathematical processes

same principles on various temporal scales. From this point of view, fractal music is not
something special, but quite the opposite: it is almost inevitable to find some kind of
self-similarity in any musical piece.

The rise of cellular automata in music came later, and its own mystique is also different.
Although the study of these dynamic processes began in the 1940s with von Neumann [152],
their adaptation to computer simulation —involving manipulations with discrete variables,
easily codifiable in very simple programs— led to their popularization starting in the 1970s,
with Conway’s famous Game of Life. Its interest was revived in the 21st century with exten-
sive subsequent studies by Wolfram [156], which have given rise to numerous applications
in composition and sound synthesis.23

The interest of musicians in these processes focuses on the fascinating capacity for self-
organization that can be unfolded from very simple principles, which has been condensed
under the label of generative music.24 If we place perceived musical information within a
virtuous area situated between overly obvious order and excessive complexity, composers’
interest in those processes exhibiting a balanced mixture of randomness and determination,
in which sub-processes can be recognized at various scales, becomes understandable.25

It is necessary to distinguish between mere sonifications of these processes and genui-
nely musical works. The role of the composer seems more akin to that of an arranger, whose
task is to extract the maximum expressive potential from previous material. The musical
impact of the final product is undoubtedly much more dependent on the intelligence
behind these latter choices than on the characteristics of the raw material —anyway, like
any other arrangement!—. Admitting that this issue is full of aesthetic nuances, it seems
evident that the use of sonification does not exempt the composer from their ultimate

23It is noteworthy that from simple automata or structures of equivalent simplicity, it is very common to
obtain fractal structures. Thus, in a certain sense, the two techniques are linked, as self-similarity can be
included as one of the types of behavior generated by cellular automata. Furthermore, one of the most
important discoveries in this field is the confirmation that extremely simple cellular automata can be
universal Turing machines [32], implying that any level of complexity can potentially be achieved using
only these mechanisms as a foundation. In a musical context, this idea is tremendously suggestive.

24In a certain sense, the conceptual appeal of these principles connects directly with the German tradition of
seeking formal beauty through the derivation of all materials from small thematic cells.

25Some connections link fractal geometry, chaotic systems, and cellular automata. Voss and Clarke’s obser-
vation [153] that the spectrum of musical signals tends to be self-similar in a 1/ f relationship, where f is
the frequency analyzed, holds significant weight. Mandelbrot [91, p. 523] attributes this scaling property of
music to the fact that musical compositions are, obviously, composed. He states that, once again, fractality and
self-reference arise from simultaneous work across various time scales, because every musical piece must
be composed down to the smallest meaningful subdivisions. This surprisingly connects with Ninagawa’s
analysis [109] of a very simple cellular automaton equivalent to a universal Turing machine: the spectrum
of the noise generated by this automaton also corresponded to the 1/ f relationship.

26

Background
1.5. Grammars for automated composition

responsibility. Bennett [15] warns us of the dangers of getting lost in the fascination of
data and losing the perspective of the musician:

Mathematical chaos, when treated with insight, reveals astonishing beauty, a beauty
whose regularity derives from the strictly deterministic techniques employed to give
birth to it. Music, on the other hand, must deal not with number, but with real,
sounding, materials. When treated with insight, these too reveal great beauty, rougher,
less regular than fractal beauty, to be sure, but beauty within which the echoes of the
real Chaos can clearly be heard.

Miranda, who has experimented with all these aforementioned techniques, has recently
pioneered the introduction of new techniques based on quantum computing [106, 107].
This type of application also connects with the field of data sonification, an area that has
been vibrant in recent years, where the transformation of raw data into sound coexists for
purely scientific purposes along with an aesthetic usage that explores poetic dimensions
and musical possibilities of such transductions.26

1.5. Grammars for automated composition

In this alternative approach, one starts with categories more typical of musical analysis
to manipulate them and obtain new results. Following the huge influence of Chomsky’s
generative grammar theory, attempts to apply these same principles to musical language
quickly emerged. The foundational literature [142, 77] sought possible universal laws that
condition musical perception. The reverse path to analysis has been the synthesis of music
from the formulation of alternative grammars.27

Programming grammatical inference rules was already possible with the early compu-
ters, and soon these techniques were envisioned in both electroacoustic music and CAC.
Roads [123, p. 53] extensively analyzed the various approaches that were emerging for
automated composition based on defining different types of grammars, arriving at this
conclusion:

Examples of recent composing and control languages [...] demonstrate how the spe-
cification of original and innovative composing grammars or parse trees may become
increasingly available as a compositional technique. In such a technique, maximum
flexibility is achieved by logically separating the syntactic specification (for building

26Parallel to this study, during these years I have also delved into the field of data sonification, both in its
scientific and artistic aspects, in projects such as Chasmata [57, 61]. In future versions of the presented model,
I will incorporate dedicated functions to enable the integration of datasets into the composition procedures.

27Zbikowski [159] has compiled a more updated collection of these already classic approaches.

27

Background
1.5. Grammars for automated composition

a grammar for a set of scores or a parse tree for a particular score) from the sonic
specification (the lexical mapping or orchestration from the score to sound objects).

Whereas for the techniques in the previous section, the key lies in mapping processes,
for musical grammars, the crucial aspect is the potentiality of the domains that each
grammar creates, as well as the search and selection strategies used to explore these spaces.
Based on the precise definition of musical features, programs such as OpenMusic,28 and
PWGL29 have emerged. They base part of their power on the ability to perform heuristic
searches based on the composer’s requirements. These environments particularly rely on
user-defined constraints for the filtering of results.30

Both stem from the functional programming paradigm of the LISP language, traditio-
nally linked to AI research, which, despite its age, has been revitalized in recent years.

An essential point in the process of synthesizing scores from grammars is the mana-
gement of information flow. The fact that a musical texture is perfectly grounded on
an inferential internal logic does not imply that its auditory reception is effective. Serial
music was already a first step that in many cases far exceeded the possibilities of perceiving
structures. The excesses of the 20th century in the complication of internal organization
seem to be giving way to new generations of composers who consider more carefully the
actual cognitive faculties. In their generative theory of tonal music, Lerdahl and Jackendoff
[77, p.300] criticized this disconnection between the avant-garde writing of the time and
the management of listening information:

The relevance of this distinction to the description of atonal and serial music per-
tains with equal or greater force to probabilistic methods of composition, to aleatoric
methods, to serialism extended to the rhythmic dimension, or to any other procedures
that do not directly engage the listener’s ability to organize a musical surface. In each
of these cases, the gulf between compositional and perceptual principles is wide and
deep: insofar as the listener’s abilities are not engaged, he cannot infer a rich organi-
zation no matter how a piece has been composed or how densely packed its musical
surface is. It is in this sense that an apparently simple Mozart sonata is more complex
than many twentieth-century pieces that at first seem highly intricate.

However, it can be opposed as an argument that listening to musical languages distant
from the tonal system has other focal points of attention. Just as looking at an abstract

28http://repmus.ircam.fr/openmusic/home
29One of the most advanced CAC systems, launched in 2002 and hosted by the Sibelius Academy in Helsinki,

discontinued at the end of 2020.
30Sandred [131] has conducted a more updated study on the use of constraints in CAC. Its application for the

imitation of traditional styles is also possible [7].

28

http://repmus.ircam.fr/openmusic/home

Background
1.6. CAC meets AI

expressionist painting is a very different experience from figurative art, the textures gene-
rated by complex grammars can offer an interest in themselves, which in no case requires
a conscious grasp of the organization of the underlying patterns.

In musical writing, polyphony31 adds a significant complication to the design of gram-
mars, as its implications simultaneously pertain to both the verticality and horizontality of
listening. Eibensteiner [52] has reviewed approaches to this fundamental aspect of compo-
sition. The polyphonic dimension of music is another good example of structures that the
common listener understands perfectly, without necessarily being aware of the techniques
that produce that harmonic balance.

Finally, a clear distinction must be made between the use of the computer as a mere
assistant for calculating structures designed and modeled by an external composer, and the
attempts to automate aesthetic decisions —-and eventually, to achieve machines capable
of creating quality music autonomously- leading us to the domain of AI.

1.6. CAC meets AI

The history of AI is irregular. Spectacular advancements have been followed by periods
of certain stagnation, and controversies about its true meaning and scope reappear periodi-
cally. Virtually all possible techniques of automated reasoning have been applied to music
composition. We can distinguish three degrees in this relationship:

Use of automated reasoning to perform specialized tasks, for which specific algo-
rithms are programmed.

Utilization of the machine as a tool for assisted creativity, where algorithms are given
broad freedom to explore musical spaces defined according to certain rules.

Complete creative autonomy, through algorithms that autonomously generate musi-
cal pieces.

However, one cannot properly speak of AI until there exists a self-observation of the
processes, that is, until a mechanism of self-evaluation of the system is established allowing
autonomous evolution of the products of this automated reasoning. It is evident that, be-
yond certain superficial parameters of a composition, real aesthetic evaluation —that is,
experiencing pleasure firsthand through an individual sense of beauty— implies social,

31A musical texture consisting of multiple simultaneous melodic lines that, while preserving their temporal
integrity, also sustain a certain level of vertical harmonic coherence.

29

Background
1.7. Bioinspired strategies

cultural, and even ideological issues that are still beyond the reach of current possibili-
ties of machines, and perhaps may never be attainable, at least in a manner comparable
to humans.

In AI, there are two opposing philosophical positions: for those who advocate weak AI,
such as Searle [139], intelligence can be mimicked, but the machine will never experience
real self-awareness and, consequently, will never feel true aesthetic pleasure. Conversely,
proponents of strong AI, led by Turing, argue that our own consciousness is nothing but the
product of computation and that, in the long term, artificial computation will achieve the
same degree of self-awareness as a human being. At this point, it would be the machines
themselves that autonomously desire to create their own artistic productions...

How will that path be traversed? The paradigms of knowledge engineering have shifted
in recent decades. The expert systems of the last decades have given way to the remarkably
successful resurgence of neural networks [110] in their multiple variations. From relatively
simple principles, a diversity of possible architectures has emerged: adversarial networks,
the integration of feedback, convolution, and in recent years, the overwhelming success of
large language models based on transformers [68],32 whose possibilities have also begun
to be explored for composition.

1.7. Bioinspired strategies

The programming mechanisms based on evolution and selection, primarily repre-
sented by genetic algorithms, have been experimented with for several decades, some-
times yielding surprising results, especially when applied to the search for solutions to
well-defined problems. In the field of CAC, numerous experiments combine musical rep-
resentation systems with algorithms that seek the best solutions through the crossing and
mutation of successive generations of generated musical specimens. Beyls [20, 19] has
explored interesting combinations of cellular automata and evolutionary algorithms. In
all artistic disciplines, creative possibilities are being explored within societies of virtual
individuals [79, 127]. A decade ago, the Iamus project [13, 47] reached a level of sophistica-
tion in its scores that raised questions about whether a hypothetical Turing test in the field
of contemporary music had already been surpassed. Iamus was based on Melomics [130],

32It remains striking that the foundation of the attention mechanisms in transformers lies in applying algo-
rithms derived from the Fourier transform to long sequences [76]. The spectral analysis of sound, ingeniously
applied to language, enables the establishment of connections between distant elements and represents sta-
tistical relationships with surprising inference power.

30

Background
1.7. Bioinspired strategies

a completely autonomous bioinspired system supported by evo-devo techniques that also
rely on the concept of genotype as a precursor that will germinate into a musical score.

Expanding the historical perspective, it can be considered that already in the early
serialist postulates of Schönberg and Webern, there was a hint of the idea of surpassing
the traditional theme33 and creating a seed. Later, Stockhausen [146] would coin the term
formula as a generative principle preceding the form.

Formula is like the seeds sown by a man, a seed that fertilizes the woman. It amazes
me to ponder the fact that a microscopic element, an incorporeal sperm, is able to fer-
tilize another human being, to generate a new complex being who contains a plentiful
genetic inheritance. This mystery is also valid for the musical genetics. [...]

A formula is a very small musical structure, a kind of musical seed, which like a
DNA is programmed with different and varied musical elements, from the raga and
the tala to the themes of the fugues and the sonatas, from the musical cells of the
impressionism to the serial series, from micro-tonality to electroacoustics. The formula,
therefore, is an integration of all these elements, constituting a cultural inheritance,
prepared and produced by cultures, divergent between themselves, since the dawn
of time.

Schaathun [134] clarified this concept in a less allegorical way:

What makes these immanent structures more audible, is that this approach to com-
position also takes care of the «higher levels», in the musical hierarchy: in addition
to forming the basis of the microstructures, the individual note, the various rhythmic
figures etc., it also takes into account the proportions of sections and, finally, the overall
form of a composition.

The imitation of different aspects of biological mechanisms has led to experimentation
with all kinds of models. Some of them use abstractions of cellular communication sys-
tems [30] to search for self-organizing structures. Other projects, like Jive [140], emphasize
interactivity with the processes.

Numerous approaches have been made to put into practice grammars that work on
these models of musical seed. In many of these works, the term musical genotypes is used
to designate that formula that, once processed or decoded, generates a musical phenotype,
usually a score or an audio signal. The combination of grammar design and evolutionary

33Each of the identifiable melodic motifs that traditionally appear in a composition, which are repeated and
transformed throughout it.

31

Background
1.8. Metaprogramming and functional programming

algorithms [41, 117] arises quite naturally. And bioinspiration directly connects with cer-
tain fractal models. Lindenmayer systems (or L-systems)34 has been extensively used by
composers as Kyburz [111]. An example of excellent results is the application that Posadas
makes of these arborescent structures combined with spectralist techniques for instrumen-
tal composition, studied among others by Besada [18] and Díaz de la Fuente [46].

It is common to find works like those of Albarracín-Molina et al. [4], which make
a conceptual and practical connection between grammars and the concept of genotype.
Once a grammar for the encoding of these musical genotypes is defined, a vast space of
possibilities for exploration opens up. To carry out this prospecting, it becomes necessary
to write programs that enable the automatic writing of genotypes, which are nothing but
another type of programs, and this is achieved through metaprogramming.

1.8. Metaprogramming and functional programming

Metaprogramming, defined as the writing of programs by other programs,35 is a rapidly
evolving field. Experts such as Rideau [119] defend it as the keystone of programming,
and Wolfram [156] stated that the true essence of computing lies in the self-organizing
capacity of simple programs. If the future of AI involves creating algorithms that can
generate other algorithms, it is essential to investigate how a piece of code can write
more sophisticated code. The analogies with biological evolution are obvious. There are
also resemblances between the mechanisms of metaprogramming and the functioning of
enzymes: the genetic code of an enzyme, when activated, carries out the synthesis of other
genetic codes that in turn can form other enzymes, and so on until it performs extremely
complex operations within the cell.

For modern metaprogramming, based on probabilistic learning, numerous systems
for representing code are being studied to optimize automatic inference. Allamanis et
al. [6] have analyzed the diversity of current models and their relationship with the
understanding of natural language, which is key in the development of large language
models. The key moment in metaprogramming would be reached when algorithms ca-
pable of self-improvement are developed. Still far from that moment, in recent years the
metaprogramming capabilities of the successful copilots, which have become an essential

34Manousakis carried out a practical implementation for composition with L-systems. His master’s thesis [93]
presents practical examples that illustrate the type of results obtained, both in symbolic information and in
sound synthesis.

35Beyond this brief definition, the conceptual frameworks of metaprogramming are complex and multifaceted.
Damaševičius and Štuikys [37] have conducted an extensive study on the related taxonomy.

32

Background
1.8. Metaprogramming and functional programming

tool for the human programmer in a very short time, bring us a little closer to Gödel’s ma-
chines [137], hypothetical computational systems capable of tackling any type of problem
through autonomous reprogramming and self-reference. Functional programming is one
of the programming paradigms well suited for this multilevel coding.

Functional programming is based on the use of functions with independent internal
behavior, meaning they do not affect external variables nor are affected by them. The main
idea is that each procedure works in a way analogous to a standard mathematical function,
and is therefore perfectly defined and its behavior identical and predictable in any data
flow context. Functional programming is a direct heir to the notation used in λ-calculus
(lambda-calculus),36 a formalism conceived in the 1930s for researching the concept of
function, its applications, and recursion. Lisp or Haskell can be seen as applications of
pure lambda calculus; many other general-purpose languages, such as JavaScript [12] and
Python [97], can be adapted to closely resemble a functional programming language,
exhibiting various degrees of purity.37 While functional programming was once thought
to be more applicable to academia than to industry, and distinct from object-oriented
programming commonly used in commercial application development, this perception
has changed over the last two decades.

The convenience and almost necessity of functional programming were already ana-
lyzed and advocated by Hughes [70] in the 1980s, who pointed out the importance of com-
partmentalizing and modularizing software design in a scenario of increasing complexity.
As the technology industry has evolved and the benefits of functional programming have
become more evident, there has been a renewed interest in this methodology. These are
some of the reasons why functional programming has experienced a resurgence:

Performance and scalability: For multiprocessor and multithreaded systems, it facili-
tates concurrency and parallelization due to its features of immutability and func-
tions without side effects. It also aids in error prevention and detection.

Modernization: Modern functional languages such as Haskell, Scala, Erlang, Clojure,
Elixir, and Elm have become popular in real-world applications.

Suitability for web and distributed systems: It aligns well with design patterns for web
applications, distributed systems, and multi-core setups, areas of significant current
growth. In web development, React and Redux have greatly promoted their adoption
in creating and managing interactive user interfaces.

36Introductory texts to this formalism include the books by Michaelson [101] and Revesz [118].
37In functional programming, a style is considered pure when there are no side effects following the evaluation

of a function. In other words, each function takes input data and produces output data, without affecting
variables or states of the program outside its internal scope.

33

Background
1.9. The problem of automated aesthetic evaluation

Convenience for big data and data science: Pure functions and immutability are highly
recommended in the manipulation of large data sets.

Incorporation into machine learning: Many AI libraries and tools use functional tech-
niques, stemming from a decades-long tradition that favored functional program-
ming in pioneering knowledge engineering research.

Presence in academia: Functional programming remains an active research topic, with
a growing community.

In the musical field, different approaches have arisen: from direct applications of
Haskell [69] for musical output, to specialized languages like Common Music [149], which
is built on Lisp implementations. Many more applications have been developed based on
the concept of conceiving scores as programs, including the Canon language, about which
Dannenberg [38, p. 47], its author, has commented:

In contrast to note lists, sequencers, and other approaches in which music is re-
presented as data to be operated upon by an editor or other program, Canon scores
are themselves programs. This allows scores to be parametrized and to incorporate
arbitrary calculations including compositional algorithms.

Currently seeing more extensive use, SuperCollider38 is a programming language and
environment that combines the functional paradigm with object-oriented architecture. Its
syntax offers expressiveness, suitability for live coding, and an effective combination of
algorithmic composition functions and sound synthesis.

1.9. The problem of automated aesthetic evaluation

An essential characteristic of intelligence is its ability to assess its own reasoning and
actions. The self-evaluation of processes with well-defined objectives —such as obtaining
the structure with the greatest resistance, the most efficient locomotion system, or the
best chess move— relies on measuring objective variables. In the case of CAC, we are
once again faced with fundamental and challenging questions: How can the quality of a
composition be measured? Is it even possible to quantify aesthetic pleasure? What is the
ultimate goal of music?

After considering the necessary tools for automated music writing, it becomes essential
to establish a mechanism for evaluating and selecting the results. The idea of applying a

38https://supercollider.github.io/

34

https://supercollider.github.io/

Background
1.9. The problem of automated aesthetic evaluation

Turing test to artistic creations is tempting, but it is not without problems, as Ariza [10]
pointed out. Other authors, such as Loughran and O’Neill, ask “why do we limit to
human?” [89]. They consider that a Turing-style approach undervalues the superhuman
results that algorithmic composition and artificial creativity can achieve. In other words, it
is possible to conceive music with high aesthetic value that is, at the same time, evidently
an artificial production.

The individual assessment of the aesthetic qualities of a piece is the result of all the
circumstances and personal backgrounds of each listener. Knowledge of the historical
context of the creation process also adds factors to the equation. Meyer [99, p. 32] states
about the perception of the value of a musical work:

We understand and appreciate a work not only in terms of the possibilities and
probabilities actually realized, but in terms of our sense of what might have occurred
in a specific compositional context: that is, in terms of the work’s implied structure.
This is perhaps especially clear in music. [...]

Not only is understanding dependent upon stylistic knowledge but so is evaluation.
The patterns that result from a composer’s actual choices are judged, as well as under-
stood, in terms of the options known to have been available given the constraints of
the style he employed.

This implies that a clear distinction must be made between the evaluation of a work of
style imitation and another in which the development of a personal style is sought:

In the first case, it is possible to equip the machine with extensive prior knowledge.
With a sufficient amount of well-curated data and a variety of heuristic functions, it
becomes feasible to develop a certain level of automatic critical sense. The already
classic works of Cope [33, 34] represented a great achievement at the time, just before
the new rise of neural networks, and continue to be excellent results in the field of
recreating styles with thematic, harmonic, and formal coherence.

In the second case, which is applicable when seeking artificial creativity and the
emergence of distinguishable individual styles, it becomes enormously elusive to
establish valid evaluation criteria.39 Galanter [56] has conducted a panoramic study
of past and future perspectives on criteria for implementing automated evaluation.
Recently, attempts have begun to develop an automated objective evaluation [154],
which allows for establishing some kind of benchmarks for comparing artificial
creativity systems.

39This does not differ much from the uncertainty faced by human musical criticism and self-criticism in the
face of new creations that propose original ideas.

35

Background
1.10. The problem of automated aesthetic evaluation

The use of new compositional techniques, such as those of CAC, is by definition situated
in a musical terra incognita where it is very difficult to exercise solid criticism, but at
the same time, they are endowed with enormous computational power, allowing for the
exploration of a large number of possibilities in the search for interesting musical structures.
For now, at the end of any automated process, there is a human programmer-composer
who, more or less elusively, defines selection criteria. The delimitation of these criteria
constitutes the compositional process itself, and they would be the ones that ultimately
define the style and bear the ultimate responsibility for the aesthetic result. Meyer later
states [99, p. 34-35]:

Human choices are involved in the making of aleatory music. [...] Aleatory com-
posers make choices, then, not on the level of successive sound relationships within
works, but on the level of precompositional constraints [...]. As a result, it seems rea-
sonable to argue that though style plays no role in the listener’s understanding and
experience of such pieces, the composer’s behavior has style and can for this reason
be evaluated.

The experience of every musician corroborates that, in music, the categories of cohe-
rence or correctness or are often irrelevante regarding the aesthetic valuation of a musical
fragment. There are plenty of correct and coherent, well-formed pieces in the grammatical
sense, that are prosaic, and vice versa. The history of the codification and implementation
of scholastic fugue in the academic field is a good example of the sterility and absurdity
of formalist approaches taken to the extreme.40 This dichotomy in pedagogical paradigms
somewhat reproduces two of the basic lines along which AI has developed:

The deconstructionist path, focused on the pure transmission of prior knowledge,
which would be equivalent to the implementation of expert systems capable of
performing a task very well, but quite limited in transcending their results through
extrapolation and analogy,

The constructionist approach, characteristic of more progressive educators, based
on stimulating of cognitive abilities. In AI, this is equivalent to approaches that
emphasize the modeling of learning and discernment processes. The core idea here
is that, in the long term, what is done is not as important as how it is done.

40The didactics of counterpoint have been the subject of controversies between mechanistic approaches, which
are reduced to the assimilation of rules for correct writing that can well be implemented in a computer,
and others that try to take a broader and less dogmatic perspective to capture the essence of polyphony.
De la Motte [40] offers a sharp critique of the traditional teaching of species counterpoint and advocates
that musicality should be sought from the beginning because the mere exercise of a technical rule is not
meaningful if it is disconnected from a guiding musical idea.

36

Background
1.10. Insights into aesthetic pleasure

1.10. Insights into aesthetic pleasure

Some analysts have tried to find common patterns in the aesthetic experience. And,
especially in conceptual art from the 20th century onwards, simplicity and conciseness
in conveying an idea seem to be valued. The scientist’s pleasure in finding the sim-
plest formula that explains a phenomenon thus has a parallel in artistic creations that
are capable of condensing a thought, an emotion, into the least amount of information.
Schmidhuber [136] has formulated a theory of aesthetic pleasure centered on information
compression. According to it, we feel pleasure in finding the most concentrated and effec-
tive way to express something. Thus, the best version of an aphorism, a proverb, or a joke
is the one that uses the least amount of information to convey the message:

The principle of Occam’s razor is not only relevant to science and mathematics, but
to fine arts as well. Some artists consciously prefer “simple” art by claiming: “art is
the art of omission”. Furthermore, many famous works of art were either consciously
or unconsciously designed to exhibit regularities that intuitively simplify them. For
instance, every stylistic repetition and every symmetry in a painting allows one part of
the painting to be described in terms of its other parts. Intuitively, redundancy of this
kind helps to shorten the length of the description of the whole painting, thus making
it simple in a certain sense.

We can thus understand that musical analysis seeks to extract the truly significant
elements from a structure and reduce a complex surface to a few constructive principles.
Conversely, the possibility of composing dense networks of musical relationships starting
from very simple principles should please us.

❋ ❋ ❋

In summary, in the history of automated music composition, there has been an as-
cending interrelation woven between computational frameworks such as the creation of
grammars, functional programming, bioinspired models, and different paradigms of ma-
chine learning.41 The model I present below also draws from many of these previous
experiences to try to unite and readapt them in a paradigm that is oriented towards the
most current techniques of deep learning, not just as another mechanism that blindly
writes scores, but primarily as the next logical step in the evolution of the composer’s craft,
from the conviction that composing is (meta)programming. Entangled in all the recursive
phenomena that occur around art, I wonder if there is beauty in the very development of
code capable of creating beauty.

41A good example of these fertile interactions is an experiment from DeepMind [126] that combined genetic
metaprogramming with LLMs to achieve some mathematical discoveries.

37

2
Conceptual and formal framework

“ Lerner appears to believe that transformations that could be carried
out by a computer program [...] could not possibly generate anything
sensible—and that no program could tell sense from nonsense anyway.
The implication [...] is that no computational theory could describe the
generation of valuable new ideas, and that only an unanalyzable faculty of
“intuition” or “insight” could recognize their value. None of these beliefs
is justified.

Margaret Boden [22, p. 105]

2.1. Composing composers

Music creation and perception are extremely complex phenomena, simultaneously
involving many time scales, cognitive layers, and social spheres. As an eminently crea-
tive activity, music is an excellent field of research to model mechanisms that lead to
artistic production and to any human activity that requires creativity. This introduction
summarizes the conceptual issues addressed by the GenoMus framework, outlined after
considering many reviews of current research on automatic composition and artificial
artistic creativity.

Despite the wide variety of existing systems, documented in metastudies and sur-
veys [53, 88], and the development of new techniques in artificial intelligence in many
domains, the autonomous creation of music by computers is still clearly behind human
skills. These limited results may be due to overly specific approaches. Pearce et al. [115]
strongly criticized many investigations for narrowing their focus to processes too restricted
to the idiosyncratic style of a particular composer, or systems too oriented to the model-
ing of well-known historical styles. In particular, recent advances based on neural nets

38

Conceptual and formal framework
2.2. Composing composers

struggle to capture big structures, as Nierhaus [108] has noted after comparing the current
paradigms in automated music generation.

Rowe and Partridge [128], and Boden [22], propose the necessary conditions for the
emergence of artificial creativity, such as a flexible knowledge representation with a high
degree of ambiguity, capable of exploring, transforming, and expanding the search space.
Multiple possible representations of the same idea are also recommended. Papadopoulos
and Wiggins [114], Crawford [35], and López de Mántaras [82] claim that more imaginative
behavioral models will arise from hybrid multiagent systems embedding a variety of
functionalities. These algorithms must devise musical patterns along with their expressive
potentialities, just as humans do.

Composers’ interest in rethinking and reinventing musical language has pervaded
aesthetics and techniques since the 20th century. Transformation and the overcoming of
well-established methods inherited from Romanticism led to post-tonal music. Linguis-
tic structuralism applied to musical syntax stimulated a relativization and awareness of
compositional procedures. Reversing the logic of this analytic knowledge, some methods
laid their foundation stone for an inverse creative strategy: synthesize new styles from the
predefinition of new rules.

The availability of computers led to the thinking of music composition from a higher
level. Composers such as Boulez [25] and Xenakis, who designed composition tools to
work towards a metamusic [158], began to exploit the new ideas of generative grammars in
the sound domain. Computer-assisted composition enabled far more complex procedures
that were too tedious or unfeasible to explore by hand. Eventually, composers began to
use computers not only for analysis and the calculation of complex structures but also for
the automation of the creative processes themselves. That fact opened the door to a new
approach to composition: a metamusical level characterized by modeling the processes
within the minds of composers.

Research in artificial musical intelligence demands formalized grammars of musi-
cal structures. Furthermore, a model of the creative mind is required to operate these
abstractions. Aesthetic criteria are extremely subjective. Furthermore, the implementation
of every model of automatic composition imposes, consciously or not, a limited search
space. Delimiting these boundaries and setting evaluation principles can be seen as metacom-
position, namely, modeling composers’ reasoning, often very obscure to themselves. As
Jacob [72] analyzed, automatic composition not only creates new styles but also new ways
of perceiving and feeling the music. Beyond this, the very concept of authorship becomes
paradoxical. In general, programming creativity is an oxymoron that inevitably leads to
metaprogramming [26].

39

Conceptual and formal framework
2.2. Music as an encoded functional grammar

2.2. Music as an encoded functional grammar

After studying many different approaches, and considering previous experience with
CAC tools, I decided to create GenoMus as a new model of procedural representation of
music optimized to be handled with different machine-learning techniques. Its key fea-
ture is an identical encoded representation of both compositional procedures and musical
results as one-dimensional arrays. Functional expressions and their output are both en-
coded as sequences of normalized floats. Some systems, such as Jive [140], have explored
this conversion of pure numeric sequences into some kind of intermediate computable
expression. The system I present opens this formalism to be arbitrarily extensible.

The GenoMus grammar is designed to favor the broadest diversity of combinations
and transformations. Genetic algorithms are suitable for the automation of incremental
exploration and selection in multiple ways. Burton and Vladimirova [28] have studied
several genetic methods applied to the generation of musical sequences; Dostál [49] also
published a survey of techniques of evolutionary composition. GenoMus design favors
genetic search processes in a very flexible manner since data structures have no determined
length and are one-dimensional. The evolution of musical ideas without constraints and
based on serendipity42 is easily implemented and complemented.

On the other hand, approaches based on neural networks need a very controlled for-
mat of data and big training datasets. GenoMus’ format represents any piece of music
as a simple one-dimensional sequence of normalized floats, which can be profitable for
techniques such as recurrent neural networks, which are capable of learning patterns from
sequential streams of data. Both procedural and declarative information (composition
techniques and music scores) share the same data format. This correspondence inevitably
resonates with other Gödelian approaches to bioinspired generative projects based on
genetic algorithms [42].

From a conceptual point of view, some of the projects most similar to GenoMus are
those by Miranda [103] and Vico and Díaz-Jerez [151]. In its more practical aspect, as a
CAC tool, the closest proposal is the Music Processing Suite43 language and environment
designed by Hofmann [63, 64, 65], also sharing commonalities with the projects by de la
Puente et al. [41] and athenaCL by Ariza [9]. However, GenoMus is not only oriented towards
manual editing but primarily towards the encoding and compression of procedural information.

42Discovery made by chance while investigating another matter. Applied to musical composition and within
the context of this research, it involves finding interesting and unexpected musical outcomes by combining
procedures designed for a different purpose.

43https://www.musicprocessing.net/

40

https://www.musicprocessing.net/

Conceptual and formal framework
2.3. The biological metaphor

Unlike many current models of automatic music creation, which primarily learn from
audio signals or sequences of score events, my effort emphasizes a layer preceding these
sources: the combination of primary abstract processes that operate before reaching the
final output of musical compositions. What I aim to capture is the underlying structure of
relationships established among musical elements. GenoMus operates on a new procedural
metalanguage that functions as a precursor to declarative musical language.

For the technical specifications of this metalanguage to be suitable for both manual
manipulation by a human user and external automated agents, the core of my proposal is
the design of an interchangeable dual grammar: an extremely simple syntax for the composi-
tional procedures that generate a music score, and a numerical encoding of that language
compressed into a single-dimensional numeric vector. In the paradigm I present, this bidi-
rectional relationship between the two representations is constructed in such a way that
any list of numbers becomes a valid program and vice versa.

2.3. The biological metaphor

The artistic results of every algorithm designed for automated composition are strongly
constrained by their representation of musical data. GenoMus is a framework for the
exploration of artificial musical creativity based on a generative grammar focused on the
abstraction of creative processes as a metalevel of compositional tasks.

Musical genotypes are conceived as functional nested expressions, and phenotypes
as the pieces created by evaluating these computable expressions. GenoMus’ grammar
is designed to ease the combination of fundamental procedures behind very different
styles, ranging from basic to complex contemporary techniques, particularly those that
can produce rich outputs from very simple recursive algorithms. At the same time, max-
imal modularity is provided to simplify metaprogramming routines to generate, assess,
transform, and categorize the selected musical excerpts. The system is conceived to main-
tain a long-term interrelation with different users, developing their individual musical
styles. This proposed grammar can also be an analytic tool, from the point of view of
composition as computation, considering that the best analysis of a piece is the shortest
accurate description of the methods behind it.

Although its target is not only genetic algorithms but a variety of machine learning
techniques, my framework uses the evolutionary analogy, similar to many other automatic
composition systems [130, 148]. The Darwinian metaphor can be confusing, since each

41

Conceptual and formal framework
2.3. The biological metaphor

system has its particular application of the same terms, sometimes denoting even opposite
concepts.

In this functional approach, the key idea is considering any piece of music as the prod-
uct of a program that encloses compositional procedures. Thereupon, the precise meaning of
bioinspired terms in the context of the GenoMus framework is defined in Table 1:

Key concept Definition

germinal vector An array of floats ∈ [0, 1] used as an initial decision
tree to build a genotype.

genotype Computable tree of genotype functions representing
compositional procedures.

phenotype Music score generated by a genotype.

encoded genotype Genotype coded as an array of floats ∈ [0, 1].

decoded genotype Genotype coded as a human-readable string,
evaluable as a JavaScript functional expression.

subgenotype Branch of a decoded genotype, which in turn is
executable as a valid decoded genotype.

encoded phenotype Music score coded as an array of floats ∈ [0, 1].

decoded phenotype Music score coded as a human-readable nested data
structure.

converted phenotype Phenotype converted to a format suitable for
third-party music software.

initial conditions Minimal data required to deterministically construct
a genotype, consisting of a germinal vector and
several constraints to handle the generative process.

playback options Conditions imposed on the generated score to
globally influence some of its characteristics.

42

Conceptual and formal framework
2.4. The biological metaphor

genotype function Minimal computable unit representing a musical
procedure, designed in a modular way to enable
taking other genotype functions as arguments.

leaf Single numeric value or list of values at the end of a
genotype branch.

specimen Output of the algorithm, representing a symbolic
musical score in an abstract form.

rendered specimen Initial conditions and playback options, along with
the genotype/phenotype pair generated, metadata,
and many other useful analytical informations.

minimal data specimen Specimen containing metadata, initial conditions, and
playback options. Must be rendered to obtain a
musical piece.

subspecimen JavaScript Object returned upon evaluation of a
subgenotype, passed as an argument of the
subgenotype containing it.

species Group of specimens that share the same parameter
structure of their musical events.

Table 1: Definitions of key concepts

The genotype, in its decoded format, is a computable expression.44 The phenotype,
as the product of the evaluation of the functional expression content in a genotype, is a
sequence of music events declared in a format designed to encode music according to a
hierarchical structure of events, voices, and scores.

Extending the biological analogy, a species can be alternatively defined as a group of
specimens that share the same parameter structure of their musical events.

Events built with many parameters can be set. For instance, a species for a very specific
electroacoustic setup could need events defined by dozens of features. Events specification
can also be extended to other domains beyond music, such as visuals, lighting, etc., along
with musical events, or standalone. Ultimately, this framework can be applied to generate
any output describable as sequences of actions.
44Consequently, the automatic writing and manipulation of genotypes can be seen as a metaprogramming

process. This central idea of parsing languages (including musical language) to extract an essential abstract
functional tree has been suggested by Bod [21].

43

Conceptual and formal framework
2.4. Formal definitions

2.4. Formal definitions

The Equation 1 defines a GenoMus framework as the 5-tuple:

G = ⟨Types, t⃗, Maps, Funcs, Coders⟩, (1)

where:

Types is the set of parameter types integrating a genotype functional tree,

t⃗ = (t1, t2, ..., tn) is the vector of parameter types ∈ Types that constitutes an event data
structure,

Maps is the set of conversion functions mapping human-readable specific formats
of each parameter type ∈ Types into numbers ∈ [0, 1], and their inverse functions,

Funcs is the set of genotype functions defined and indexed in a specific library, which
take and return data structures ∈ Types, and

Coders = {tran, dec, enc, eval, conv} is the set of functions covering all required trans-
formations to compute phenotypes from germinal conditions.

The 6-tuple of auxiliary parameters shown in Equation 2 defines the restrictions needed
for the construction of a genotype from a germinal vector:

R = ⟨extrap, type, EligFuncs, depth, maxl, seed⟩, (2)

where:

extrap ∈N is the number of extra parameters in each event, determining the species,

type ∈ Types is the output type of the genotype function tree,

EligFuncs ⊆ Funcs is the subset of eligible functions encoded indices,

depth ∈N>0 is a depth limit to the branching of the genotype function tree,

maxl ∈N>0 is the maximal length for lists of parameters, and

seed ∈N is a seed state used to produce deterministic results with random processes.

Finally, the initial conditions needed to generate deterministically generate a specimen
are contained in the ordered pair ⟨x⃗, R⟩, where x⃗ is a germinal vector.

44

Conceptual and formal framework
2.4. Formal definitions

The three main abstract data structures of the GenoMus framework —germinal vectors,
encoded genotypes, and encoded phenotypes— contain a vector of the same form: a simple
one-dimensional array of n numbers ∈ [0, 1]. Due to limitations on the representation of
reals, but mainly to enable some crucial numeric transformations as pointers to functions
(explained in Section 5.1.4), these arrays only include values with a 6-digit mantissa. More
formally, Equation 3 establishes that the only elements these vectors include are those
members of the set:

V = {x ∈ Q ∣ 0 ≤ x ≤ 1, x ⋅ 106
∈N}. (3)

Data structures handled below are encoded as vectors x⃗ = (x1, x2, ..., xn) of any length n,
belonging to a finite n-dimensional vector space defined in Equation 4:

Vn
= {x⃗ ∣ xn ∈ V, n ∈N>0}. (4)

The complete search space needed to contain all possible encoded representations is
defined in Equation 5 as the vector space

S =
n
⋃
i=1

Vi, (5)

a superset that contains all vectors of any length ≥ 1 up to n, where the upper limit of n
depends on the practical limitations of computation and memory.

For a given set of restrictions R, any arbitrarily long vector ∈ S is a germinal vector x⃗.
So, let cond be the set of all possible initial conditions, as shown in Equation 6:

Icond = {(x⃗, R) ∣ x⃗ ∈ S}. (6)

Let Egen be the set of all possible encoded genotypes y⃗ = (y1, y2, ..., ym) with the same
restrictions R. Every germinal condition ∈ Icond corresponds to a valid encoded genotype
∈ Egen capable of generating a valid functional expression representing a music score.
Unlike Icond, which accepts as germinal vector any member ∈ S, Egen includes only vectors
decodable as computable functional expressions.

The Equation 7 defines a surjective map tran ∶ Icond ↠ Egen , which transcribes any
germinal conditions into an encoded genotype. Hence, the set Egen can be defined as:

Egen = {(y⃗, R) ∣ y⃗ ∈ S, ∃ (y⃗, R) = tran(x⃗, R)}. (7)

45

Conceptual and formal framework
2.4. Formal definitions

The application tran involves several subprocesses covered next in detail, in such a
way that the germinal conditions ((x1, x2, ..., xn), R) generate a deterministic decision tree
leading to the construction of a unique genotype ((y1, y2, ..., ym), R), mapping the values
xn to ym one-by-one according to restrictions R. Since the number of choices m needed
to build a valid encoded genotype rarely matches the length n of a germinal vector x⃗,
truncation and loops are employed:

If x⃗ has more items than needed, they are ignored, effectively acting as a truncation
of the remaining unused part of x⃗.

If tran needs more elements than those supplied by x⃗, tran reads x⃗ elements repeated-
ly from the beginning as a circular array, until reaching a closure, to complete a valid
vector y⃗. That implies that germinal vectors with even a single value are valid inputs
to be transformed into functional expressions.

To avoid infinite recursion when loops occur while applying tran(x⃗, R), the restric-
tions R introduce some limits to the depth of functional trees and the length of
parameter lists.

Let Dgen be the set of all possible decoded genotypes. Members in this set are all
possible text strings representing well-formed function trees, plus a seed value, necessary
when random processes are involved. Another surjective map, dec ∶ Egen ↠ Dgen, takes an
encoded genotype and produces its corresponding decoded genotype, presented as a
human-readable evaluable expression. This is also a surjection since different but equiva-
lent encoded genotypes can generate the same executable function tree as a text output.

Similarly, the map eval ∶ Dgen ↠ Ephen evaluates deterministically decoded genotypes to
produce encoded phenotypes; this is a surjective map too, because the same output can be
obtained as the result of different music composition processes. Again, this encoded form is
a sequence of values ∈ S representing a musical score. Now, we can define with Equation 8

the set of all encoded phenotypes —or latent music space— that can be produced from
decoded genotypes ∈ Dgen as:

Ephen = {z⃗ ∈ S ∣ ∃ z⃗ = eval ○dec ○ tran(x⃗, R)}. (8)

It is noteworthy to point out that the length of most vectors z⃗ does not correlate with
the lengths of their corresponding encoded genotypes and germinal vectors in initial
conditions. Indeed, simple procedures can generate long music scores, while a single
chord or melodic motif may be the result of complex manipulations.

46

Conceptual and formal framework
2.5. Retrotranscription of genotypes into germinal vectors

Finally, let Dphen be the set of decoded phenotypes generated at the end of the process.
Creating decoded phenotypes implies a further map conv ∶ Ephen → Dphen to convert this
data to another standard or custom musical format, either to generate symbolic information
such as sheet music or to directly synthesize sound. This is a last trivial transformation,
once it is known how a score is encoded.

2.5. Retrotranscription of genotypes into germinal vectors

Occasionally, when beginning with a manually programmed decoded genotype to
construct a precise musical composition procedure, there emerges a need to identify corres-
ponding germinal conditions capable of generating it. This step is crucial in obtaining
abstract vectorial representations of manually edited expressions, enabling their integration
into a hypothetical training dataset.

Reciprocally to dec, the function enc ∶ Dgen ↣ Egen is a map that takes as input a couple
consisting of a valid expression α and an auxiliary value seed (for repeatability dealing with
random processes), and returns a corresponding encoded genotype. This transformation
of α is a simple conversion from text tokens to numbers ∈ V; enc is an injective map
since it returns only one encoded genotype from a text expression. Restrictions R for
the obtained encoded genotype are derived directly from the features of the original
functional expression.

The key point is that starting from a well-formed functional expression α, an encoded
genotype (y⃗, R) = enc(α, seed) is at the same time one of its many possible germinal vectors.
The Equation 9 shows this identity:

enc(α, seed) = (y⃗, R) = tran(y⃗, R). (9)

The tran function is built in such a way that a decoded genotype (y⃗, R) ∈ Egen generated
from any germinal vector is one of its reciprocal germinal vectors itself. In other words,
y⃗ simultaneously represents a symbolic functional expression and the decision chain that
leads to the algorithmic writing of the very same functional expression.

Hence, Egen ⊂ Icond, and the map tran acts as an identity function when applied to
decoded genotypes. This feature enables the repeatability and consistency of encoded
genotypes regardless of changes in the function library Funcs, since the numeric pointers
to eligible functions EligFuncs are preserved, while at the same time, the couple (y⃗, R) can
be directly introduced back in the pool of germinal conditions without transformations.

47

Conceptual and formal framework
2.5. Retrotranscription of genotypes into germinal vectors

Figure 3 illustrates this chain of surjective mappings and the retrotranscription to
germinal vectors. Remarkably, a conversion from phenotype to genotype is far from tri-
vial, as it is a reverse engineering process: the construction of a procedural generator of
music can be seen as an analytical problem with many alternative solutions since the
same musical pattern can be obtained by applying a combination of very different logical
relations.

Icond

initial
conditions

Egen

encoded

Dgen

decoded

genotypes

Ephen

encoded

Dphen

decoded

phenotypes

tran

id

dec

enc

eval

AI algorithms

conv

conv−1

procedural information musical outputs

Figure 3: Mappings from germinal conditions to decoded phenotypes. Double-ended blue arrows illustrate
the retrotranscription feature of the tran conversion: any encoded genotype vector y⃗ ∈ Egen belongs
to the germinal vectors set Icond as well, as it autogenerates itself. Orange arrows show how
the encoding of a decoded genotype ∈ Dgen generates a unique numerical representation, although
different encoded genotypes may correspond to the same decoded expression, due to the readjustment
of parameters needed to fit into valid ranges.

❋ ❋ ❋

This last step can be provided by a variety of machine learning algorithms. Facilitating
this type of abstract analysis, based on the learning of relationships between pure one-
dimensional arrays, is the essence that determines the entire design of the GenoMus
framework, and the field of research where the potential of this paradigm lies.

The ensuing pages endeavor to breathe life into this concept through a tangible imple-
mentation, exploring its technical and artistic capabilities.

48

3
Main data structures

“ Debussy had been very helpful to Varèse. [...] Varèse often quoted
his motto, “Works of art make rules, rules do not make works of art.” [...]
According to Descartes, the senses are a source of errors, which the rea-
son should correct: hence science should not have to do with the senses.
Varèse was of the contrary opinion. As computer synthesis experiments
progressed, he realized more and more the importance of perception as
an unavoidable and often unintuitive interface between the physical world
and its inner representation.

Jean-Claude Risset [120, p. 19]

This chapter presents the representation system with which the model operates. This
system consists of various data structures designed to facilitate the bidirectional encoding
processes discussed in Chapter 5. The primary abstractions represented are the specimen,
the genotype functions, and the data structures they return, as well as the method of struc-
turing the generated music. It explains how the musical output is structured in a modular
manner, enabling flexible articulation both polyphonically and formally. Furthermore, it
delves into the multidimensional structure of the event, placing a particular emphasis on
the mapping solutions for its constituent parameters.

3.1. Anatomy of a specimen

The specimen is the output unit of GenoMus. It is stored as a JavaScript Object, main-
taining compatibility for export and saving as a JSON file. It exists in two versions:

49

Main data structures
3.1. Anatomy of a specimen

● Rendered specimen

The complete specimen generated each time initial conditions are evaluated along
with playback options. It contains the generated genotype and the resulting pheno-
type, both in encoded and decoded formats, in addition to metadata. A specimen
must be rendered to visualize and play the musical outcome in the Max interface.

● Minimal data specimen

It contains only the necessary data for regeneration: metadata, initial condi-
tions, and playback options. Due to the deterministic implementation of the system,
evaluating these minimal data always yield the same result. Since the file size is
usually much smaller than the rendered version, this is the format used to save
genotypes during candidate selection and evolution phases.

● Subspecimen

Any JavaScript Object returned by any genotype upon evaluation. It contains its
own evaluable expression, as both encoded and decoded genotype, the phenotype,
also encoded and decoded, and additional characteristics of the phenotype that will
be used by the parent functions.

All formats can be exported as JSON files. In the case of rendered specimens, the
musical result will be loaded into the user interface without the need to reevaluate the
genotype. As a minimal example, Listing 1 displays the subspecimen returned by the
genotiype s(v(e(n(2),m(60),a(100),i(100)))), which is the simplest expression to gene-
rate a complet score with a fortissimo middle C lasting 2 seconds.

1 {

2 funcType: 'scoreF',

3 encGen: [1, 0.472136, 1, 0.854102, 1, 0.236068, 1, 0.09017, 0.51, 0.920833, 0,

1,0.326238, 0.53, 0.430607, 0, 1, 0.562306, 0.55, 0.613655, 0, 1, 0.18034, 0.56,

1, 0, 0, 0, 0],

4 decGen: 's(v(e(n(2),m(60),a(100),i(100))))',

5 encPhen: [0.618034, 0.618034, 0.920833, 0.618034,0.430607, 0.613655, 1],

6 phenLength: 1,

7 phenVoices: 1,

8 harmony: { root: 0.430607 },

9 timegrid: { tempo: 1 },

10 }

Listing 1: Simple subspecimen

50

Main data structures
3.1. Anatomy of a specimen

The subgenotype is merely an intermediate data structure passed to the parent func-
tions of a functional tree. It remains invisible at any moment. If this subgenotype corres-
ponds to the complete final expression, it will be used to construct the complete specimen
shown in Listing 2. The minimal data version would only contain the framed elements,
as the rest is all a result of the evaluation of these preceding initial conditions. Even in
this scenario where the score is the minimum possible for a single event, the amount of
information required by the minimal data specimen is significantly less.

1 {

2 "metadata" : {

3 "specimenID" : "jlm-20231030_022052003-12",

4 "GenoMusVersion" : "1.0.0",

5 "rating" : 0,

6 "duration" : 2,

7 "voices" : 1,

8 "events" : 1,

9 "depth" : 4,

10 "encGenotypeLength" : 29,

11 "decGenotypeLength" : 33,

12 "generativityIndex" : 0.97,

13 "germinalVectorLength" : 29,

14 "germinalVectorDeviation" : 0,

15 "iterations" : 1,

16 "millisecondsElapsed" : 0,

17 "renderTime" : null,

18 "history" : {

19 "1" : "Genotype manually edited, novelty 0.7093 - 1v 1e 2s"

20 },

21 "storeIndex" : 214

22 },

23 "initialConditions" : {

24 "eventExtraParameters" : 0,

25 "specimenType" : "scoreF",

26 "localEligibleFunctions" : [0, 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 14, 15, 17, 19, 20, 21, 22, 25, 26,

27, 28, 29],

27 "depthThreshold" : 8,

28 "maxListCardinality" : 10,

29 "seed" : 426212866477420,

30 "germinalVector" : [1, 0.472136, 1, 0.854102, 1, 0.236068, 1, 0.09017, 0.51, 0.920833, 0, 1,

0.326238, 0.53, 0.430607, 0, 1, 0.562306, 0.55, 0.613655, 0, 1, 0.18034, 0.56, 1, 0, 0, 0, 0]

31 },

32 "playbackOptions" : {

33 "playbackRate" : 1,

34 "minQuantizedNotevalue" : 0,

35 "stepsPerOctave" : 12

36 },

37 "encodedGenotype" : [1, 0.472136, 1, 0.854102, 1, 0.236068, 1, 0.09017, 0.51, 0.920833, 0, 1, 0.326238,

0.53, 0.430607, 0, 1, 0.562306, 0.55, 0.613655, 0, 1, 0.18034, 0.56, 1, 0, 0, 0, 0],

38 "decodedGenotype" : "s(v(e(n(2),m(60),a(100),i(100))))",

39 "encodedPhenotype" : [0.618034, 0.618034, 0.920833, 0.618034, 0.430607, 0.613655, 1],

51

Main data structures
3.1. Anatomy of a specimen

40 "subgenotypes" : {

41 "scoreF" : ["s(v(e(n(2),m(60),a(100),i(100))))"],

42 "voiceF" : ["v(e(n(2),m(60),a(100),i(100)))"],

43 "eventF" : ["e(n(2),m(60),a(100),i(100))"],

44 "paramF" : [],

45 "listF" : [],

46 "notevalueF" : ["n(2)"],

47 "lnotevalueF" : [],

48 "midipitchF" : ["m(60)"],

49 "lmidipitchF" : [],

50 "articulationF" : ["a(100)"],

51 "larticulationF" : [],

52 "intensityF" : ["i(100)"],

53 "lintensityF" : [],

54 "goldenintegerF" : [],

55 "lgoldenintegerF" : [],

56 "quantizedF" : [],

57 "lquantizedF" : [],

58 "harmonyF" : [],

59 "operationF" : [],

60 "recursiveF" : []

61 },

62 "leaves" : [[9, 0.920833, 2], [14, 0.430607, 60], [19, 0.613655, 100], [24, 1, 100]],

63 "decodedPhenotype" : {

64 "metadata" : {

65 "totalVoices" : 1,

66 "effectiveVoices" : 1,

67 "totalEvents" : 1,

68 "effectiveEvents" : 1,

69 "eventsPerVoice" : [1],

70 "effectiveEventsPerVoice" : [1],

71 "durationsPerVoice" : [2000],

72 "rhythmicDurationsPerVoice" : [2000],

73 "scoreDuration" : 2000,

74 "rhythmicScoreDuration" : 2000,

75 "generalOnsetTime" : 0

76 },

77 "score" : {

78 "voice-1" : {

79 "event-1-1" : {

80 "onset" : 0,

81 "pitches" : [60],

82 "duration" : 2000,

83 "intensity" : 100

84 }

85 }

86 }

87 },

88 "roll" : ["[", "markers", "[", 2000, "soundEnd", "]", "[", 2000, "rhythmEnd", "]", "]", "(", "(", 0, "

(", 6000, 2000, 127, "(", "slots", "(", 7, "1-1", ")", ")", ")", ")", ")"]

89 }

Listing 2: Simple rendered specimen

52

Main data structures
3.1. Anatomy of a specimen

The Table 2 explains the specimen data structure. It can serve as a good map to visualize
how they relate and their purposes within the unit, providing an overview of the rest of
this chapter.

Documentation Key Description

minimal data

6.3 metadata Identification of the specimen, along with formal characteristics and
data regarding its generation process

6.3.1 specimenID Unique identifier name of the specimen

6.3.2 comments User optional comments

GenoMusVersion Core code version

6.3.3 rating Last subjective rating assigned by the user

duration Total effective duration in seconds

voices Number of effective voices

events Number of effective events

depth Maximum depth reached in the decoded genotype functional tree

encGenotypeLength Length of the encoded genotype numeric array

decGenotypeLength Length of the decoded genotype string

6.3.4 generativityIndex Ratio between the length of score and the length of encoded genotype

germinalVectorLength Length of germinal vector

6.3.5 germinalVectorDeviation Deviation between the germinal vector and the encoded genotype

iterations Number of attempts needed to find the genotype

millisecondsElapsed Milliseconds elapsed during genotype generation

renderTime Milliseconds elapsed during phenotype rendering

6.3.6 history Log of the processes of specimen generation and transformation

storeIndex Candidate number of the specimen in the current generation

5.5 initialConditions Key parameters that deterministically generate the specimen

eventExtraParameters Number of additional parameters for events, determining the species

3.2 specimenType Main function type of genotype, determining output type

4.10 localEligibleFunctions Pool of available genotype functions

depthThreshold Limit of functional tree depth for the genotype; once reached, only
identity functions can be selected

maxListCardinality Maximum number of items in parameter lists

4.4 seed Global seed value for the repeatability of random functions

5.4 germinal vector Primary vector that initiates the decision tree determining the
genotype

53

Main data structures
3.2. Function types

6.4 playbackOptions Modifiers that globally alter the final result

6.4.1 playbackRate Global tempo rate applied to playback.

6.4.2 minQuantizedNotevalue Minimum notevalue to establish quantization of event durations

6.4.3 stepsPerOctave Equal divisions of the octave to determine the available set of pitches

rendered data

5.1 encodedGenotype Genotype encoded as an array of floats ∈ [0, 1]

5.4 decodedGenotype Genotype decoded as a string containing a functional expression

5.7 encodedPhenotype Phenotype encoded as an array of floats ∈ [0, 1]

4.9 subgenotypes Dictionary containing all substrings of the decoded genotype that
can be internally referenced

7.1.3 leaves Positional index of all terminal numeric values at the end of each
branch in the decoded genotype

5.8 decodedPhenotype Decoded phenotype stored as a human-readable Object

metadata Formal characteristics of the phenotype: number of voices, events,
partial and global durations, etc.

score Tree-list of voices, events, and parameters

A.5 roll Decoded phenotype converted to the bach.roll input format

Table 2: Specimen data structure. The horizontal line indicates where a minimal data specimen would end.
In the Documentation column, there is a reference to the section that details the implementation of
each data type.

3.2. Function types

The construction of specimens relies on a library of genotype functions. These functions
are grouped according to the type of output, marked with a label. For each function type,
there is an identifier that is one or two fixed characters at the beginning of the name of
each genotype function. This is a convention that facilitates the analysis of functional trees
and simplifies some parsing tasks. The required function types, their labels, and identifiers
are listed in Table 3.

54

Main data structures
3.2. Function types

Category Function type label Identifier Output

Main types paramF p generic parameter

listF l list of generic parameters

eventF e event

voiceF v voice

scoreF s score

Human-readable notevalueF n encoded duration

lnotevalueF ln list of encoded durations

midipitchF m encoded MIDI pitch

lmidipitchF lm list of encoded MIDI pitches

articulationF a encoded articulation

larticulationF la list of encoded articulations

intensityF i encoded intensity

lintensityF li list of encoded intensities

quantizedF q encoded quantized value

lquantizedF lq list of encoded quantized values

goldenintegerF g encoded golden integer

lgoldenintegerF lg list of encoded golden integers

Domain-specific harmonyF h harmonic grid

timegridF t rhythmic pattern grid

recursiveF r operation for recursive equations

Table 3: Genotype function types, tags, and identifiers

The function types can be categorized in this manner (though this classification holds
no relevance in the implementation and serves solely to facilitate a better understanding
of the needs they address):

55

Main data structures
3.3. Anatomy of a genotype function

● Main function types

Neccesary basic types to articulate complete scores. They are the basic building
blocks that enable the construction of the structures explained in Section 3.6.

● Human-readable function types

Variants of the paramF and listF types adapted for their decoded version to faci-
litate the reading and writing of genotypes. They cover the mandatory parameters of
an event (notevalue, midipitch, articulation, and intensity) as well as other com-
mon parameters, such as integers referring to the number of iterations, repetitions,
intervals. Nothing prevents adding other types for future needs that require different
numerical mappings. On the other hand, in a genotype, all these functions can al-
ways be replaced by others from the generic paramF types for individual parameters
and listF for parameter lists.

● Domain-specific function types

Types used for specific procedural tasks, such as harmonic and rhythmic struc-
turing, or for creating recursive iterations as subroutines within a genotype. There
is no issue in adding new types for emerging needs. It is advisable to design these
types to be human-readable as well.

3.3. Anatomy of a genotype function

The algorithmic writing of functional trees is similar to the one proposed by Laine and
Kuskankaare [75], also focused on bioinspired algorithmic composition. A useful and more
formal study of the algorithmic generation of trees was published by Drewes et al. [50].
A simpler but comparable project, also based on the automatic writing of executable
programs, was presented by Spector and Alpern [143].

A decoded genotype is a procedural representation of a music score written as a nested
functional expression under the common syntax:

f uncName(argument1, argument2, ..., argumentN),

where each genotype function can take other functions as arguments until the limit im-
posed by the germinal condition depth is reached.

56

Main data structures
3.3. Anatomy of a genotype function

All genotype function calls share the same modular structure, to ease the algorithmic
metaprogramming of genotypes.45 The output of every genotype function is a JavaScript
Object that includes the properties listed in Table 4.

Key Value example Description

funcType ’lmidipitchF’ output type of the function, a property used to
create a pool of subgenotypes that can be
referenced as an argument for other functions

encGen [1, 0.506578, 0.53,

0.430607, 0.53,

0.470107, 0]

encoded genotype

decGen ’lm(60,62)’ decoded genotype; that is, the expression of the
evaluated function that returns itself

encPhen [0.430607, 0.470107] encoded phenotype

phenLength 1 Total events in the phenotype (= 1 if not a voice
or a score)

phenVoices 1 Total voices in the phenotype (= 1 if not a score)

(others) (not returned by function
lm)

Specific properties generated after evaluation,
containing useful information for the parent
function.

Table 4: Object keys of a subspecimen returned by a genotype function after evaluation, using as example the
expression lm(60,62), which represents a list of two MIDI pitches.

This data structure is what each genotype function expects for every argument, and
what is passed to the next one. A crucial item is the property decGen, where a function
returns its own code as a string. It allows reevaluations of its code in execution time, which
is essential to enable generative procedures involving iteration, recursion, or stochastic
processes.

45Although, due to the experimental setup, the syntactic structure in this implementation is effectively an
executable JavaScript expression. Many programming languages share this basic syntax for making function
calls. This would allow the system to be portable to other languages while maintaining the textual integrity
of genotypes without the need for adaptation. In this regard, Pedregosa [116] already conducted an initial
exploratory study on the possibilities of implementing GenoMus in C++.

57

Main data structures
3.3. Anatomy of a genotype function

As an example of a minimal genotype function, in Listing 3 it is commented the code
for the identity function m of the midipitchF type. This function serves as a mere container
for a MIDI pitch, returning it with some adjustment.

1 // midipitch identity function

2 indexGenotypeFunction("m", "midipitchF", 7, ["midipitchLeaf"]);

3 m = midipitch => {

4 // stores encoded function index number and leaf index number

5 var encodedFuncID = g2p(7);

6 var leafID = leavesInfo["midipitchLeaf"].ID;

7 // calculations and transformations

8 midipitch = p2m(m2p(midipitch)); // adjusts the pitch to tuning system

9 // Object returned after indexing all subgenotypes

10 return indexDecGens({

11 funcType: "midipitchF",

12 encGen: [1, encodedFuncID, leafID, m2p(midipitch), 0],

13 decGen: "m(" + midipitch + ")",

14 encPhen: [m2p(midipitch)],

15 phenLength: 1,

16 phenVoices: 1,

17 });

18 };

Listing 3: Minimal genotype function example (midipitchF identity function m)

The use of the indexDecGens function in line 8 is common to almost all functions.
Its purpose is to index all new genotype subgenotypes contained in the result of the
function evaluation. The evaluation of the expression m(60) to refer to middle C returns
this Object:

{

funcType: 'midipitchF',

encGen: [1, 0.326238, 0.53, 0.430607, 0],

decGen: 'm(60)',

encPhen: [0.430607],

phenLength: 1,

phenVoices: 1

}

Listing 4: Subspecimen returned by expression m(60)

58

Main data structures
3.3. Anatomy of a genotype function

The same basic structure can be found in function vMotif, in this case of the type voiceF,
which constructs motifs from parameter lists. In its declaration, as shown in Listing 5, these
elements are evident:

1 // creates a voice based on lists without no loops (shortest list determines number

of events)

2 indexGenotypeFunction("vMotif", "voiceF", 199, ["lnotevalueF", "lmidipitchF", "

larticulationF", "lintensityF"], "listF"); // indexes the function in the

library

3 vMotif = (listNotevalues, listPitches, listArticulations, listIntensities, ...

extraParams) => {

4 var encodedFuncID = g2p(199); // calculates encoded function index number

5 var comma = extraParams.length > 0 ? "," : "";

6 // this block performs previous calculations from given arguments

7 var seqLength = Infinity;

8 for (var idx = 0; idx < eventExtraParameters; idx++) {

9 seqLength = Math.min(seqLength, (extraParams[idx].encPhen.length));

10 }

11 seqLength = Math.min(

12 seqLength,

13 listNotevalues.encPhen.length,

14 listPitches.encPhen.length,

15 listArticulations.encPhen.length,

16 listIntensities.encPhen.length);

17 // checks that the result does not exceed certain established limits

18 if (seqLength > phenMaxLength) {

19 validGenotype = false;

20 if (verbosity) printLog("aborted genotype due to exceeding the max length");

21 return indexDecGens(evalExpr("v(" + defaultEvent + ")"));

22 }

23 // now the procedure of the function is executed

24 var eventsSeq = [g2p(seqLength)];

25 for (var event = 0; event < seqLength; event++) {

26 eventsSeq.push(listNotevalues.encPhen[event]);

27 eventsSeq.push(0.618034);

28 eventsSeq.push(listPitches.encPhen[event]);

29 eventsSeq.push(listArticulations.encPhen[event]);

30 eventsSeq.push(listIntensities.encPhen[event]);

31 for (var idx = 0; idx < eventExtraParameters; idx++) {

32 eventsSeq.push(extraParams[idx].encPhen[event]);

33 }

34 }

59

Main data structures
3.3. Anatomy of a genotype function

35 // Object returned after indexing all subgenotypes

36 return indexDecGens({

37 funcType: "voiceF",

38 encGen: flattenDeep([1, encodedFuncID,

39 listNotevalues.encGen,

40 listPitches.encGen,

41 listArticulations.encGen,

42 listIntensities.encGen,

43 extraParams.map(extraPar => extraPar.encGen),

44 0]),

45 decGen: "vMotif(" +

46 listNotevalues.decGen + "," +

47 listPitches.decGen + "," +

48 listArticulations.decGen + "," +

49 listIntensities.decGen + comma +

50 extraParams.map(extraPar => extraPar.decGen) + ")",

51 encPhen: eventsSeq,

52 phenLength: seqLength,

53 phenVoices: 1,

54 });

55 };

Listing 5: Declaration of vMotif function

As seen in Listings 3 and 5, each declaration of a genotype function is preceded by
a call to indexGenotypeFunction, which indexes them in the genotypeFunctionsLibrary

according to this format:

indexGenotypeFunction(<functionName>, <functionType>, <functionIndexNumber>,

[<parameter1_funcType>, <parameter2_funcType>, ..., <parameterN_funcType>],

<extraParameters_funcType>);

Listing 6: Indexing genotipe functions in genotypeFunctionsLibrary

The function type designated last for <extraParameters_funcType> is only mandatory
for functions that need to make use of extra parameters for events. For instance, the
declaration of the vMotif function, which creates a voice containing a motif, is indexed as
follows The global genotype functions library is created during the system initialization.
If the number of extra parameters is 3, the first lines of functions m and vMotif will index
them as shown in Listing 7. All the details about the genotypeFunctionsLibrary can be
found in Section 4.10.

60

Main data structures
3.4. Leaf types

m: {

encIndex: 0.326238,

intIndex: 7,

functionType: 'midipitchF',

arguments: ['midipitchLeaf']

},

vMotif: {

encIndex: 0.988764,

intIndex: 199,

functionType: 'voiceF',

arguments: [

'lnotevalueF',

'lmidipitchF',

'larticulationF',

'lintensityF',

'listF',

'listF',

'listF'

]

}

Listing 7: Genotype functions indexed in genotypeFunctionsLibrary

3.4. Leaf types

In the terminals of each branch of a functional tree, you find the leaves, concrete nu-
merical values passed as arguments. When constructing genotypes, each function uses
type labels to specify the type of function it requires as arguments. Certain functions don’t
require another function but a terminal parameter, that is a leaf. Each leaf type is similarly
identified with a label. Table 5 gathers the leaf labels and shows their correspondences
with function types.

Both function type labels and leaf type labels are keywords used by the genotype
construction algorithm, as explained in Section 6.1.2.

61

Main data structures
3.5. Leaf parameters and mapping design

Category Leaf type label Homologous function type

Parameter leaves leaf paramF

voidLeaf —

notevalueLeaf notevalueF

midipitchLeaf midipitchF

articulationLeaf articulationF

intensityLeaf intensityF

quantizedLeaf quantizeF

goldenintegerLeaf goldenintegerF

List leaves listLeaf listF

lnotevalueLeaf lnotevalueF

lmidipitchLeaf lmidipitchF

larticulationLeaf larticulationF

lintensityLeaf lintensityF

lquantizedLeaf lquantizedF

lgoldenintegerLeaf lgoldenintegerF

Table 5: Leaf types labels

3.5. Leaf parameters and mapping design

Considerable attention has been devoted to the design of musical parameters mapping.
Although it may seem like a minor issue, its design has far-reaching consequences in the
construction of the latent musical space that a generative algorithm explores. This has
already been noted by researchers such as Doornbusch [48]. In his thesis, he exclusively
investigates the influence and importance of mapping in algorithmic design and asserts:

[...] the pieces of music are inseparable from the mapping used in their creation,
from the micro to the macro level, so much so that for at least some parts of the music,
the music and structure is the mapping rather than the music being a product of the
underlying data.

62

Main data structures
3.5. Leaf parameters and mapping design

To obtain different functions that transform generic parameters ∈ [0, 1] into a readable
representation of musical event properties, many variants have been tested to achieve a
good balance in satisfying the following criteria:

Capability to represent a wide range of values for each parameter. The ability to
encompass extreme values mapped within the normalized range implies that the
search space becomes much broader. This is positive in terms of significantly ex-
panding the expressiveness of the system, but it comes with the trade-off that it will
statistically be more challenging to find optimal solutions.

Probabilistic adjustment to create a search space biased towards the most common
values for each parameter, better representing typical usage in real music.

Readability in the decoded version. Use of easily manageable ranges, close to com-
mon standards.

3.5.1. Eligible values and Gaussian conversion

Before analyzing the mapping of each parameter type, it is necessary to specify that eli-
gible values, in their normalized and encoded version, are values ∈ [0, 1] with a maximum
of 6 decimal places. This limitation has several reasons:

It ensures conformity with the Max interface, which does not support greater preci-
sion in floats for communication with Node.js. This is a purely circumstantial matter
but has certain other interesting consequences:

Reduces the size of the generated data. There are 106 possible values for each para-
meter, which is more than sufficient.

Also facilitates the use of the special type of parameter I have denominated golden
encoded integer, which is employed in various contexts of the core code and benefits
from this limitation of available values.

To maintain the readability of decoded genotype expressions, each parameter type uses
common values (for example, pitch is represented with standard MIDI numbers). These
convenient numeric ranges are converted to normalized values following these criteria:

63

Main data structures
3.5. Leaf parameters and mapping design

A wide range of values is covered (for instance, for parameters regarding rhythm
and articulation, very short and long durations are available).

For each parameter type, a central value of 0.5 is assigned to a midpoint among the
typical values, interval [0.2, 0.8] covers the most usual range, and values < 0.2 and
> 0.8 are reserved for extreme values rarely used in common music scores.

To favor the predominance of ordinary values, a previous custom conversion, similar
to the lognormal function, is applied to each encoded parameter value x supplied by
a germinal vector.

So, by randomly generating germinal vectors, uniformly distributed values ∈ [0, 1] are
remapped to a Gaussian-like distribution, introducing a desired bias to produce musical
scores with common characteristics, without limiting the possibilities to the generation
of specimens exhibiting more extreme features. Let gaussian be the function according
to Equation 10, that enables this conversion remapping a uniform distribution to a nor-
mal one:

gaussian(x) =
1
2
+

1
10

ln(
ϵ + x − 1

ϵ − x
) , (10)

where ϵ = 1.00678367 is a value to adjust the boundaries of the function to the values 0
and 1.

The inverse conversion is obtained using Equation 11:

gaussian−1
(x) =

−ϵ + ϵ ⋅ e10x

−148.413− e10x (11)

Figure 4 shows the result of this mapping of values from the linear distribution.
The design of this conversion ensures that the central range of numbers ∈ [0.2, 0.8], re-
served for the most common values of each specific parameter type, remains nearly as a
straight line.

For the next equations, let round0 be the standard function that rounds a real number
to its nearest integer, and let roundn be the auxiliary function that rounds a float to have
only n decimals. The encoded values, denoted as xe, fall within the range [0, 1], while
the decoded values, represented by xd, are displayed in the human-readable code of the
decoded genotypes.

64

Main data structures
3.5. Leaf parameters and mapping design

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0
0

uniform distribution value

G
au

ss
ia

n-
lik

e
di

st
ri

bu
ti

on
ou

tp
ut

Figure 4: Mapping uniform distribution to Gaussian-like. The solid blue line shows the result of the conver-
sion using the Gaussian function. The dashed orange line displays the best adjustment of a straight
line for that conversion, to illustrate the fit for central values. The dashed blue line indicates the
interval without any conversion, to assess the extent of deviation introduced by the distribution
change.

3.5.2. Generic parameter leaf

The terminal value type leaf is employed by the generic parameter type identified with
the label paramF, which can be used for any user-defined purpose as well as for manda-
tory specific parameters. It is solely filtered through the formatParam function shown in
Equation 12, which automatically limits the normalized range between 0 and 1, applied
to prevent manually entered genotype values from falling outside the valid interval.

formatParam(xe) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0, if xe < 0

round6(xe), if xe ∈ [0, 1]

1, if xe > 1

(12)

65

Main data structures
3.5. Leaf parameters and mapping design

According to this conversion, the evaluation of the minimal genotype p(0.12345678)

returns the Object shown in Listing 8:

{

funcType: 'paramF',

encGen: [1, 0.708204, 0.5, 0.123457, 0],

decGen: 'p(0.123457)',

encPhen: [0.123457],

phenLength: 1,

phenVoices: 1

}

Listing 8: Subspecimen returned by a generic parameter

A generic parameter, once filtered to be within the normalized range and rounded to
display only six values in the mantissa, is effectively identical to the corresponding values
within the encoded genotypes.

3.5.3. voidLeaf

Some functions do not require any leaf parameter. For this situation, the tag voidLeaf is
used. The function pRnd, indexed with the code indexGenotypeFunction("pRnd", "paramF",

131, ["voidLeaf"]), for instance, generates a random generic parameter, returning an Ob-
ject like this when evaluated pRnd():

{

funcType: 'paramF',

encGen: [1, 0.962453, 0],

decGen: 'pRnd()',

encPhen: [0.179478],

phenLength: 1,

phenVoices: 1

}

Listing 9: Subspecimen returned by pRnd()

66

Main data structures
3.5. Leaf parameters and mapping design

3.5.4. notevalueLeaf

This type of leaf parameter represents the duration of an event in seconds. As it will
be seen in Section 6.4.2, there is a global playback option that determines the tempo for
an entire phenotype, called playbackRate. If this parameter is equal to 1, the duration
will correspond to seconds. For a playbackRate = 2, the actual values will be half, and the
musical segment will be played at double speed.

For the design of mapping durations to the normalized interval [0, 1], the aim has
been to combine the possibility of representing a very wide range of rhythmic values with
the need to avoid excessive dispersion of proportions among the most probable values,
resulting in overly eccentric outcomes too frequently. This has been implemented using
Equation 13.

notevalue(xe) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

round6(
1
4

tan (
πxe

2
)), if xe ≤ 0.08

round5(
1
4

tan (
πxe

2
)), if xe ∈ [0.08, 0.990053)

16, if xe > 0.990053

(13)

0.25 0.5 0.75 1

2

4

6

8

10

12

14

16

0
0

generic parameter

ev
en

t
du

ra
ti

on
(n

ot
ev

al
ue

or
se

co
nd

s)

Figure 5: Conversion from generic parameter to notevalue

67

Main data structures
3.5. Leaf parameters and mapping design

The differentiation in rounding type based on the input range has been introduced
so that simple rhythmic values, which are more commonly used, have a simpler nume-
rical form. The loss of precision is minimal, but readability and consistency between the
input code and the recoded values after conversions are significantly improved for those
commonly used numbers.

With this conversion, as can be observed in Figure 5, the defined range allows for
representing extremely short durations. This spans from extremely short events suitable
for enabling granular textures, to durations lasting many seconds, suitable for sequences
of widely spaced events.

To verify the achievement of the second requirement, thereby avoiding excessive value
differences in the central area of the conversion, it is preferable to represent the previous
graph on a logarithmic scale. Figure 6 allows visualizing that the central half covers a
ratio of 1 ∶ 16. This corresponds, for example, to the five rhythmic values between the
whole note and the sixteenth note. In a typical musical piece, the maximum and minimum
durations tend to not exceed that quantity of binary orders of magnitude.

...

Figure 6: Logarithmic plot of the conversion from generic parameter to notevalue. The logarithm base 2 is
used to represent steps to rhythmic values that double the duration, similar to how the palette of
rhythmic figures in the musical notation system operates.

68

Main data structures
3.5. Leaf parameters and mapping design

To revert a notevalue to the generic parameter used by encoded genotypes, Equation 14

is employed.

notevalue−1
(xd) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

round6 (
2 arctan (4xd)

π
) , if xd ∈ [0, 16)

1, if xd ≥ 16
(14)

Among the playback options is the quantization of rhythmic values to fit a minimum
value and its multiples. For the modification of the previous conversion, we first need
Equation 15, which will be used to quantize a rhythmic value x to the nearest value that
is a multiple of q ∈ [0, 16], the minimum rhythmic value from which the quantization grid
is derived.

quant(x) = q ⋅ round0 (
x
q
) (15)

Now, for a note value q that determines the minimum duration, Equation 16, a variation
of the previous equation 13, is applied.

quantizedNotevalue−1
(xd) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

q, if xd ≤ notevalue(q)

round6
⎛

⎝
quant(

1
4

tan (
πxd

2
))
⎞

⎠
, if xd ∈ [0.08, 0.990053]

16, if xd > 0.990053
(16)

3.5.5. midipitchLeaf

The numerical representation of pitch in the MIDI standard is widely adopted, so it
is used as a human-readable representation. Depending on the tuning system employed,
we can confine ourselves to the conventional 12-semitone chromatic scale, establish other
microtonal divisions, or use the entire chromatic range with a maximal resolution of about
0.005 cents.

The configuration of the set of eligible pitches can be done at various moments in
the process. The global variable stepsPerOctave affects the entire generative process and
conditions the adjustment of a midipitchLeaf to the available values. When this variable is
changed from the interface, the auxiliary converter functions are updated, and the current
specimen is recalculated accordingly.

69

Main data structures
3.5. Leaf parameters and mapping design

This is independent of the harmonic grids that can affect all or part of a genotype. In
any case, the hierarchy of the global variable is always superior. So, pitches in quarter
tones will result in a degraded resolution if the variable stepsPerOctave = 12, that is a
conventional chromatic scale.

Defining s as the number of equal divisions of the octave, the Equation 17 converts a
generic parameter to midipitch:

midipitch(xe) = round6
⎛

⎝

round0(127t ⋅ gaussian(xe)+ s)
s

− 12
⎞

⎠
(17)

The inverse conversion, in equation 18, does not require the constant s:

midipitch−1
(xd) = round6

⎛

⎝
gaussian−1

(
xd

127
)
⎞

⎠
(18)

Figure 7 shows how the generic parameters are mapped to midipitch values. The
graph shows how for values of x ∈ [0.2, 0.8], the range covers the three central octaves,
maintaining an almost constant slope within the resulting intervals.

0.2 0.4 0.6 0.8 1

12

24

36

48

60

72

84

96

108

120

0
0

127

generic parameter

pi
tc

h
(M

ID
I

st
an

da
rd

va
lu

es
)

C9

C8

C7

C6

C5

C4

C3

C2

C1

C0

C−1

Figure 7: Conversion from generic parameter to midipitch. The blue dashed line shows how the mapping
would look without the Gaussian-like adjustment of the input value.

70

Main data structures
3.5. Leaf parameters and mapping design

3.5.6. articulationLeaf

The articulation allows differentiation between the duration of a concatenated event
within a voice and the effective duration of sound. The duration, established by notevalue,
conditions the time that will elapse until the insertion of the next event in the same voice.
The articulation sets the percentage of that duration in which the event will effectively
sound. In Figures 12 and 13, I already visually depicted this distinction between the
nominal duration of the event and the effective sound duration.

Unlike the parameter for pitch, which already embeds a logarithmic relationship among
frequency and musical intervals, for articulation, I introduced a double stretching of the
available range: at the lower end to achieve extremely short effective durations, and at the
higher end to create dense textures of overlay. Both cases are especially useful in sound syn-
thesis and remote handling of virtual instruments. The implemented conversions from a
generic parameter to articulation and its inverse are achieved using Equations 19 and 20.

articulation(xe) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

round0
⎛

⎝
75 tan2 (

π

2
⋅ gaussian(xe))

⎞

⎠
, if xe ≤ 0.988456

104, otherwise

(19)

articulation−1
(xd) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

gaussian−1⎛

⎝
round6(

2
π
⋅ arctan(

√
xd

5
√

3
))
⎞

⎠
, if xd < 104

104, otherwise

(20)

The rounding of the value to an integer in Equation 19 simplifies readability. Greater
precision is not necessary to have an ample enough palette of effective durations. The
graph in Figure 8 depicts the range of available articulations. The central value represents
a percentage of 75% of the event’s duration, resulting in a non-legato, while the central
zone of values corresponds to the most common articulations, ranging from staccato to
molto legato.

With this approach, an articulation = 100 guarantees a legato between all events within
a voice, regardless of the duration of each one. On the contrary, when the same effective
duration is required regardless of the nominal duration, the aFix function should be used.
This function, in turn, employs a parameter notevalue as effective duration by applying
the necessary calculations.

71

Main data structures
3.5. Leaf parameters and mapping design

0.25 0.5 0.75 1

101

102

103

104

0

generic parameter

ar
ti

cu
la

ti
on

(p
er

ce
nt

ag
e

of
th

e
du

ra
ti

on
)

(overlapping long events)

(overlapping events)
legatissimo
molto legato
legato
non legato
poco staccato
staccato
staccatissimo

(barely audible)
(silent events)100

Figure 8: Conversion from generic parameter to articulation. The blue dashed line shows how the mapping
would look without the Gaussian-like adjustment of the input value. Note that the solid line. As a
reference, the dashed red line shows a completely linear transition between 0 and 104.

3.5.7. intensityLeaf

The intensity parameter relies on the velocity46 setting in the MIDI standard, which
already incorporates a logarithmic relationship that ensures increments in its value are
psychoacoustically consistent. However, instead of using its integer scale up to 127, I also
rescale it as a percentage of the maximum possible intensity, aiming for a more intuitive
understanding. However, as highlighted by Palamara and Deal [113] in their project fo-
cused on this subject, there are many technical and perceptual reasons why it is difficult
to model objective scales for dynamics. Register, timbre, and many other issues affect our
final sense of intensity.

In the conversion, performed with Equation 21 and plotted in Figure 9, the mantissa
is limited to two decimal places for easier readability. This yields sufficient resolution for
very fine nuances in dynamics. Equation 22 reverses this conversion.

intensity(xe) = round2(100 ⋅ gaussian(xe)) (21)

intensity−1
(xd) = round6(gaussian−1

(
xd

100
)) (22)

46In the MIDI protocol, velocity is associated with dynamics and not with tempo as it might seem.

72

Main data structures
3.5. Leaf parameters and mapping design

0.2 0.4 0.6 0.8 1

10

20

30

40

50

60

70

80

90

100

0
0

generic parameter

in
te

ns
it

y
(p

er
ce

nt
ag

e
of

to
ta

ld
yn

am
ic

ra
ng

e)

tutta forza

fortissimo

forte

mezzoforte

mezzopiano

piano

pianissimo

(silence)

Figure 9: Conversion from generic parameter to intensity. The blue dashed line shows how the mapping
would look without the Gaussian-like adjustment of the input value. There is no unified corres-
pondence between numeric values and traditional indications of dynamics in sheet music; each
notation software uses a slightly different mapping. The one used here is merely indicative.

3.5.8. quantizedLeaf

This type covers an auxiliary need and does not refer to any particular specific musi-
cal parameter. It serves multiple purposes where an integer, typically small, is involved.
Determining the number of iterations, a transposition interval, a self-reference to another
function, etc., requires the use of quantizedLeaf to make these values readable.

The conversion of a generic parameter to a quantizedLeaf, implemented with Equa-
tion 23 and reversed with Equation 24, allows for a range of integer values within the
interval [−1000, 1000]. Again, the mapping introduces a stretching so that extreme values
become progressively much less probable, as shown in Figure 10.

quantize(xe) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−1000, if xe < 0.003822

round0(12 tan(πxe +
π

2
)), if xe ∈ [0.003822, 0.996178]

1000, if xe > 0.996178

(23)

73

Main data structures
3.5. Leaf parameters and mapping design

quantize−1
(xd) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if xd ≤ −1000

1
2
+

arctan(
xd

12
)

π
, if xd ∈ [−1000, 1000]

1, if xd ≥ 1000

(24)

To better visualize how the mapping distributes integer values, progressively becoming
less probable, Figure 10 displays both linear and logarithmic representations of the con-
versions. The logarithmic plot displays only the positive part of the conversion.

Figure 10: Linear and logarithmic plot of the conversion from generic parameter to quantized value. It can
be observed how the encoded values in the range [0.5, 0.75] are mapped to integer values within
the range [0, 12].

3.5.9. Golden encoded integers and goldenintegerLeaf

A special type of conversion has been added for various purposes. Although in specific
cases it is also used as leaves in a genotype, its development stemmed from another
motivation: it was essential to find a simple way to assign numerical identifiers to genotype
functions that were within the normalized range [0, 1], like the rest of the encoded elements,
but distributed uniformly, regardless of the number of items involved. This issue will be

74

Main data structures
3.5. Leaf parameters and mapping design

discussed in Section 5.1.4. To deal with all these requirements, this special conversion
has been implemented. I refer to a golden encoded integer (or simply golden integer) as a
float ∈ [0, 1] obtained after applying a bijective map based on the well-known properties
of the golden angle (an angular version of the golden section), combined with modular
arithmetics.

Taking φ =
1+
√

5
2

as the golden ratio, this map is achieved by the Equation 25:

golden(n) = round6(nφ mod 1) ∣ n ∈N>0, n <maxn, (25)

where mod is a modulus operator that works with floating-point numbers, and the first
integer producing a repeated value is maxn = 514262, returns the golden value correspon-
ding to the integer n. The limited quantity of maxn integers able to generate unique
values golden(n) until reaching a repeated value, is big enough to attend its diverse
applications.47

1200 20 40 60 80 100

0.2

0.4

0.6

0.8

1

integer x

g
ol

d
en

(x
)

(e
n

co
d

ed
 in

te
g

er
)

0

Figure 11: Conversion from integer to golden encoded integer. First 125 integers mapped across interval
[0, 1]. Every value is projected horizontally to visualize the balanced accumulative distribution.
The lines gradually fade in intensity to better perceive the entry of each new value in the sequence.

This conversion has a very convenient feature: despite ignoring how many values will
be needed to be stored, the distribution across the interval [0, 1] is stochastically well-

47The calculation of maxn = 514262 has been purely empirical, generating values with golden(n) until finding
the first value ∈ [0, 1] that repeats.

75

Main data structures
3.6. Leaf parameters and mapping design

balanced. Figure 11 shows how the distribution of indices uniformly covers the range of
normalized values.48

Golden integers are also useful for encoding discrete values in other contexts, both
in genotypes and phenotypes, as shown in Figures 34 and 38. Some special genotype
functions, as the autoreference class discussed in Section 4.9, need integers without a
defined range as arguments, which involve this map again. For phenotype encoding,
golden values are also indispensable for specifying discrete features such as the number
of voices per score, events per voice, and items inside a multiparameter.

Although all the previous conversions are carried out using standard arithmetic opera-
tions, when it comes to golden integers, there is a peculiarity to consider. Calculating with
the auxiliary function goldenEncodedInteger, for instance, that golden(100) = 0.803399, is
a straightforward process. However, the inverse operation golden−1

(0.803399) = 100 would
require a hundred operations and comparisons until a match is found. If the value ∈ [0, 1]
has no possible conversion, hundreds of thousands of operations would be needed each
time. That’s why a lookup table is created at initialization time to streamline the golden−1

function to this simple check. Listing 10 demonstrates how this conversion table is created
and used.

1 // golden ratio constant

2 const PHI = (1 + Math.sqrt(5)) / 2;

3 // calculates golden encoded integers

4 var goldenEncodedInteger = integ => r6d(integ * PHI % 1);

5 // creates lookup tables for golden encoded integers at initialization time

6 var g2pTable = {};

7 (function(){ for (var integ = 0; integ < 514262; integ++) g2pTable[

goldenEncodedInteger(integ)] = integ })();

8 var p2gTable = Object.fromEntries(Object.entries(g2pTable).map(([key, value]) =>

[value, key]));

9 // generic parameter to golden encoded integer conversion

10 var p2g = param => g2pTable[param] == undefined ? -1 : g2pTable[param];

11 var g2p = integ => p2gTable[integ] == undefined ? -1 : parseFloat(p2gTable[integ]);

Listing 10: Implementation of conversion to golden encoded integer

48As far as I know, this kind of mapping based on the modulation of golden-angle properties to obtain the
balanced distributions of an unknown quantity of indices is not common, although some methods have
been recently proposed [100] to obtain simple algorithms to deal with similar optimization problems in
other domains.

76

Main data structures
3.6. Internal structure of the score

3.6. Internal structure of the score

The GenoMus syntax reconciles extreme simplicity with the expressiveness and flexi-
bility of representation. The essential criterion in the design of the procedural represen-
tation system for musical composition can be summarized as follows: finding the ideal
compromise between creating a modular framework reduced to the minimum variety
of substructures and maintaining the ability to represent music with significant stylistic
differences and internal complexity.

The score is the data structure generated as an output of the generative process. Its
design maintains a highly simplified symbolic representation of the musical text while
retaining flexibility to capture everything from simple monophonic fragments to intricate
micropolyphonic swarms of overlapping sounds.

On the other hand, the event, as the fundamental sonic structure in the score, can
accommodate an arbitrary number of additional parameters, in addition to the mandatory
ones, to possess as many dimensions as necessary to characterize it.49

Between these two structures lies the voice, which serves as the container for sequences
of events, often an abstraction that encompasses cells, thematic motifs, melodies, and
sequential material in general.

Some features similar to those of the musical representation format in bach.roll for Max
have also been adopted (which moreover facilitates their conversion). In bach, events are
chords, with pitch as a multi-parameter that may have one or more pitches. This ability to
treat a sequence of notes as a sequence of chords has been incorporated into the format,
owing to its convenience in various composition contexts, where a single voice can contain
a harmonically complex flow.

The following list outlines the essential rules for forming and combining GenoMus
scores, as schematically illustrated in Figure 12.

49The events in the sequential scores of Csound, the veteran programming language for sound synthesis,
also have mandatory initial parameters and an indefinite number of user-defined extra parameters for any
purpose.

77

Main data structures
3.6. Internal structure of the score

Figure 12: Constituent structures of a score. The three basic components, event, voice, and score, are repre-
sented in red, blue, and green, respectively. The shaded areas indicate the duration of sound events,
while the edges with more intense color show the duration of the underlying rhythmic pattern.
Often, both durations differ.

Basic parameters wrapped as events

An event contains four mandatory parameters: notevalue n, midipitch m, articulation
a and intensity i (ex. 1).

The midipitch parameter is actually a multi-parameter and can contain one or more
values. This is very convenient when it’s more appropriate to use the chord as an
individual entity and not as separate voice events (ex. 2).

Depending on the species, an event can contain one or more extra parameters. All
extra parameters are generic parameters, and their meaning and mapping are user-
defined (ex. 3 & 4).

78

Main data structures
3.6. Internal structure of the score

Rhythmic duration and sound duration

As the compact representation of the events (in red) shows, there are two different
durations for an event: the rhythmic duration is a nominal duration that determines
when the next concatenated event starts, and the sound duration, which is the actual
duration of the musical event, determined as a percentage of the rhythmic duration.

Rhythmic duration and sound duration are properties that also apply to the voice
and the score, determined by the maximum durations of each type of the elements
that comprise them.

The sound duration, determined by articulation, can be very different from an ele-
ment’s rhythmic duration. In Figures 12 and 13, the contours of an element define
its rhythmic duration, while the color-filled content illustrates its sound duration.

A blank section at the beginning of an element indicates the presence of one or more
silent events intended to delay the onset of the first sonic event.

Events wrapped as a voice

A voice wraps one or more events sequentially concatenated in time, without gaps
(ex. 5, 6, 7 & 8).

An articulation = 0 will result in time gaps within a sequence, functioning as a rest
(fourth event in ex. 5, 6, 7 & 8).

Voice events with articulation < 100 allow sound durations to be less than rhythmic
durations, functioning, for example, as staccato (ex. 5).

In events with articulation = 100, rhythmic durations and sound durations are equal,
producing a perfect legato effect (ex. 6).

Voice events with articulation > 100 create an overlapping effect (ex. 7). Longer
articulation values can generate dense clusters of sounds using only one voice (ex. 8).

Voices wrapped as a score

A score wraps one or more voices. All voices in a score start at time 0, but their
rhythmic and sound durations can be different (ex. 9, 10 & 11).

A voice in a score can contain silent events at the beginning, delaying its effective
entrance (ex. 11).

79

Main data structures
3.6. Internal structure of the score

Merging scores

The horizontal juxtaposition of events to form a voice, as well as the vertical superpo-
sition of voices to create a score, are relatively straightforward processes. However, the
formation of scores by combining other scores is a slightly more complex process, as it
involves several cases, as represented in Figure 13.

Figure 13: Visual depiction of merging scores

When a score is constructed as a result of merging two scores, A and B, each with m
and n voices respectively, various scenarios can arise:

A and B merged vertically, producing one score with m + n voices, all starting at the
beginning (ex. 12).

A and B merged sequentially, producing a new score with max(m, n) voices, where
voices from B start at the rhythmic end of A. This case can occur in two variants:

80

Main data structures
3.7. Representations of generated music

• m ≤ n: The resulting voices inside the new score result from joining each pair of
voices from A and B. Voices from A without pairs remain untouched.

• m < n: The voices inside the new score result from joining each pair of voices
from A and B. In voices from B without pairs some silent events must be added
to fill the gaps, producing a coherent sequential result according to the rhythmic
duration of A.

The end of a score’s sound duration is typically different from its rhythmic end.
Merged scores may result in either silent gaps or sound overlapping, depending on
the articulation of events within.

In summary, there are no limits to score merging. Since scores can be merged both
horizontally and vertically, arbitrarily complex structures are possible (ex. 15). However,
the final output will be a single score with several voices, each containing a number of
events.

3.7. Representations of generated music

The primary output of GenoMus is its abstract format, purely numerical, as explained
in Chapter 5. This format consists of a one-dimensional numerical sequence, which com-
pactly encodes the musical voices and events of each generated score. This numerical
representation is complemented by a human-readable JavaScript Object representation,
containing explicit information about the parameters of each event, along with global
metadata for the musical piece. Various other representations suitable for visualization,
playback, and evaluation of the generated musical segments are derived from this internal
format.

It is important to note that the musical output I aim to obtain is significantly different
from a conventional score. The standard notation intended for performance is schematic:
rhythmic values are identical, and articulation and dynamics are established flatly, often
with only very general indications. A truly expressive interpretation builds upon this
simplified representation —which is very convenient for reading and understanding the
formal structure— to introduce all the subtleties, nuances, and inaccuracies that constitute
music.

With this model, I try to capture not only the basic musical structure but also the inter-
pretation, ensuring that it includes all the desired innacuracies that make the result engaging
and appealing. This poses a methodological challenge: the conventional notation of a score

81

Main data structures
3.7. Representations of generated music

becomes inadequate when trying to capture all those variations in dynamics, articulation,
or duration present in the rendered output. An alternative form of representation must be
sought.

As a compromise solution, the output is represented as a score, building upon con-
ventional musical symbols but arranging them in a manner that can capture the subtle
variations in each event. I use the paradigm that the bach library employs in the bach.roll
viewer, while incorporating some new features. The computer-aided composition package
bach for Max, by Agostini, and Ghisi [3], allows a simple and responsive visualization
of experimental results as interactive music scores, which can also send data to synthe-
sizers or music editors using MIDI, OSC, or any custom format. The data structure of the
GenoMus phenotypes is close to the hierarchical structure of music employed by bach
package [2], based on scores, voices, events, event multiparameters, and slots (applied to
contain extra parameters). Genotypes’ functional expressions are displayed in an embed-
ded text editor, similar to the system created by Burton [27], also based on bio-inspired
music patterns evolution.

Figure 14: Example of a condensed SVG score. The duration of each event is represented with a line. Darker
colors indicate louder dynamics. As an optional feature, different color hues are used to mark
events belonging to different voices.

The bach.roll integrated into the patch allows for all kinds of subsequent modifications
within the Max environment. However, for the final export, I have created a direct trans-
formation from the textual representation to generate an SVG file with certain optional
display features. Figure 14 shows the SVG export in condensed score mode, with all voices
collapsed into a single system. On the other hand, in Figure 15, we can see the same music
with the voices separated, which can be convenient in many cases.

The direct translation to conventional notation can be done from the bach environment
itself. Depending on each situation, this may involve challenging adaptation scenarios that

82

Main data structures
3.7. Representations of generated music

require manual adjustments and ad hoc decisions on what information should be preserved
in the score or how certain characteristics, such as degrees of randomness in dynamics
and rhythmic precision, can be expressed with simple but clear verbal indications.

Note that the use of accidentals is unconventional. Since there are no bar lines or
key signature indications, I follow the criteria found in many of Lutosławski’s works:
accidentals only affect the note they are placed on. For a sequence of several consecutive
F♯, all notes will carry the sharp symbol. However, unless altered for particular purposes,
the automatic usage of sharps or flats is arbitrary and does not adhere to any specific key
signature, prioritizing readability over diatonicity.

Figure 15: Example of multivoice output SVG score. This example shows the optional timegrid.

The examples of traditional notation in this text have been transcribed in this manner.
A future addition could be to incorporate this translation to MusicXML notation directly
from the core algorithm, without using bach as an intermediary.

Alongside the primary use of bach.roll to monitor the results of the experiments, a MIDI
file is simultaneously created, enabling quick manipulation of these fragments with other
programs such as VST instruments, score editors, DAWs, etc. This file can also serve as the
main monitoring source, replacing real-time playback of bach.roll. This alternative output
allows for improved rhythmic precision in cases of high polyphony or event density.

83

4
Genotype functions

“ There is a lot of focus both among machine learning researchers and
the general public about using machine learning and AI to replace peo-
ple and duplicate human creative processes and I find this such a limiting
viewpoint. From an artistic and humanist perspective, people derive a lot
of value from making creative work, so we need to make tools that people
actually use, where we are adding value to people’s lives, rather than re-
placing people.

Rebecca Fiebrink [67]

This chapter introduces the types of genotype functions in the current implementation
of GenoMus. It then presents the internal structure of a genotype function’s declaration,
along with the data structures it outputs. The text focuses on a select few functions, illus-
trating the main types and those with special characteristics requiring further clarification.
The complete and updated documentation of all available genotype functions is available
at https://genomus.dev/genotype-functions.

4.1. Identity functions

For each function type, there exists an identity function that simply passes its arguments
without any musical transformation, apart from formatting the output data accordingly
when necessary. For the sake of simplicity, identity functions are named using only their
corresponding function type identifiers. They primarily serve as wrappers and testing
functions.

84

https://genomus.dev/genotype-functions

Genotype functions
4.1. Identity functions

For instance, for the eventF type, with the identifier e, the function e returns an event
without making any modifications, simply serving as a wrapper for the data of its required
parameters, which in this case are also identity functions for each specific type. The simple
genotype e(n(1),m(69),a(100),i(100)) returns this subspecimen as a JavaScript Object:

{

funcType: 'eventF',

encGen: [1, 0.236068, 1, 0.09017, 0.51, 0.844042, 0, 1, 0.326238, 0.53, 0.608053,

0, 1, 0.562306, 0.55, 0.613655, 0, 1, 0.18034, 0.56, 1, 0, 0],

decGen: 'e(n(1),m(69),a(100),i(100))',

encPhen: [0.844042, 0.618034, 0.608053, 0.613655, 1],

phenLength: 1,

phenVoices: 1,

harmony: { root: 0.608053 }

}

Listing 11: Subspecimen returned by eventF identity function

Identity functions of different types, as those from previous example, can be replaced
with generic parameters: the evaluation of e(p(0.844042),p(0.608053),p(0.613655),p(1))
yields the same phenotype encoded in the key encPhen as that in Listing 11.

{

funcType: 'eventF',

encGen: [1, 0.236068, 1, 0.123457, 0.5, 0.844042, 0, 1, 0.123457, 0.5, 0.608053,

0, 1, 0.123457, 0.5, 0.613655, 0, 1, 0.123457, 0.5, 1, 0, 0],

decGen: 'e(p(0.844042),p(0.608053),p(0.613655),p(1))',

encPhen: [0.844042, 0.618034, 0.608053, 0.613655, 1],

phenLength: 1,

phenVoices: 1,

harmony: { root: 0.608053 }

}

Listing 12: Subspecimen returned by eventF identity function with generic parameters

Identity functions are the first of their kind in the genotype function library listing.
They are the only ones used when an automatically constructed function tree exceeds the
maximum depth threshold. The genotype presented in Listing 13 has been constructed
with a depth limit of 3. Consequently, starting from line 4, only identity functions are used
for the required types until reaching the leaf values of the functional tree.

85

Genotype functions
4.2. Lists

1 sHarmonicGrid(

2 sConcatS(

3 sConcatS(

4 s(

5 v(

6 e(

7 n(2.577),

8 m(28),

9 a(177),

10 i(100)))),

11 s(

12 v(

13 e(

14 n(0.9222),

15 m(101),

16 a(11),

17 i(100))))),

18 s(

19 v(

20 e(

21 n(0.24554),

22 m(82),

23 a(82),

24 i(100))))),

25 hJapanesePentatonicScale(

26 m(98)))

Listing 13: Indentity functions after reaching depth limit

4.2. Lists

Another fundamental element consists of lists of a specific parameter type. Similarly,
the identifier of the function type is used to name the identity function within that category.
Listing 14 shows the Object returned when evaluating the genotype l(-0.3,0.17,0.42,1.4),
using the identity function l belonging to listF type. Notice how the parameters −0.3
and 1.4, outside the range [0, 1] are rewritten. This could occur when manually entering
code, as in the automatic generation of genotypes, this would never happen. It can also
be observed that the values 0.17 and 0.42 in the input list remain the same in both encGen

and encPhen keys since they are generic parameters to which no mapping is applied.

86

Genotype functions
4.3. Formal structures

{

funcType: 'listF',

encGen: [1, 0.618034, 0.5, 0, 0.5, 0.17, 0.5, 0.42, 0.5, 1, 0],

decGen: 'l(0,0.17,0.42,1)',

encPhen: [0, 0.17, 0.42, 1],

phenLength: 1,

phenVoices: 1

}

Listing 14: Subspecimen returned by listF identity function

The evaluation of the identity function lm(60,62,64,65,66,68,70,71,-30,200) clearly
shows the performed conversions. Here, I have also introduced two values outside their
range, the last two in the list, which are rewritten to stay within the allowed boundaries
of a midipitch parameter.

{

funcType: 'lmidipitchF',

encGen: [1, 0.506578, 0.53, 0.430607, 0.53, 0.470107, 0.53, 0.509975, 0.53,

0.529894, 0.53, 0.54972, 0.53, 0.588857, 0.53, 0.62693, 0.53, 0.645439, 0.53, 0,

0.53, 1, 0],

decGen: 'lm(60,62,64,65,66,68,70,71,0,127)',

encPhen: [0.430607, 0.470107, 0.509975, 0.529894, 0.54972, 0.588857, 0.62693,

0.645439, 0, 1],

phenLength: 1,

phenVoices: 1

}

Listing 15: Subspecimen returned by lmidipitchF identity function

4.3. Formal structures

Another type of elementary function is that which combines elements vertically or
in juxtaposition to create formal structures. Listing 16 shows the implementation of the
function vConcatV, which takes two voices as arguments and returns the resulting voice
obtained by juxtaposing both.

87

Genotype functions
4.3. Formal structures

1 indexGenotypeFunction("vConcatV", "voiceF", 43, ["voiceF", "voiceF"]);

2 vConcatV = (v1, v2) => {

3 var encodedFuncID = g2p(43);

4 var totalEvents = v1.phenLength + v2.phenLength;

5 if (totalEvents > phenMaxLength) {

6 validGenotype = false;

7 return indexDecGens(evalExpr("v(" + defaultEvent + ")"));

8 }

9 return indexDecGens({

10 funcType: "voiceF",

11 encGen: flattenDeep([1, encodedFuncID, v1.encGen, v2.encGen, 0]),

12 decGen: "vConcatV(" + v1.decGen + "," + v2.decGen + ")",

13 encPhen: [g2p(totalEvents)]

14 .concat((v1.encPhen).slice(1))

15 .concat((v2.encPhen).slice(1)),

16 phenLength: totalEvents,

17 phenVoices: 1,

18 harmony: v1.harmony,

19 timegrid: v1.timegrid,

20 })

21 };

Listing 16: Implementation of vConcatV function

Several observations on common characteristics in the implementation of many geno-
type functions:

The variable totalEvents calculates the total number of events resulting from the
concatenation of voices. Then, it is checked not to exceed the predefined maximum
value. Otherwise, the genotype is declared unviable and returns a default expression.

In line 12, the element decGen is formed from the same element of voices v1 and v2

taken as arguments. The auxiliary function flattenDeep flattens the array to make it
one-dimensional and eliminate intermediate brackets.

Each function returns a string with its own decoded genotype; in line 13, this self-
expression is formed with the function name and by joining the inherited decGen

elements from the arguments.

88

Genotype functions
4.3. Formal structures

The encoded genotype of a voice type starts with the golden encoded integer repre-
senting the number of contained events. This quantity is taken from totalEvents

and converted using g2p. Then, it is concatenated with the encPhen of each voice,
excluding the unnecessary first element.

The self-analysis properties harmony and rhythm inherit characteristics from the first
voice. For this function, these features are taken as primary.

The creation of a score can result from multiple operations of horizontal and vertical
juxtaposition. Among the elementary formal functions, the most basic is sConcatS, whose
purpose is the simple concatenation of two scores. Although its implementation is com-
pletely analogous to that of vConcatV, the situation is much more complex due to the
circumstances shown in Figure 13. For this union, the auxiliary function mergeScores is
called. It is worth reproducing its code in Linsting 17 to visualize the details involved
in each of the cases that may arise depending on the number of voices integrated by
each score element. The comments are quite enlightening to understand the details of the
concatenation procedure.

1 // aux functions to concatenate encoded phenotypes from two scores

2 var mergeScores = (scoEncPhen1, scoEncPhen2) => {

3 var sco1data = decodePhenotype(scoEncPhen1);

4 var numVoicesSco1 = p2g(scoEncPhen1[0]);

5 var numVoicesSco2 = p2g(scoEncPhen2[0]);

6 var maxVoices = Math.max(numVoicesSco1, numVoicesSco2);

7 var minVoices = Math.min(numVoicesSco1, numVoicesSco2);

8 var mergedPhenotype = [g2p(maxVoices)];

9 var largestVoiceDur = sco1data.metadata.rhythmicScoreDuration * 0.001;

10 var currentVoiceDur = 0;

11 var readCurrentVoiceDur;

12 var posSco1 = 1;

13 var posSco2 = 1;

14 var numEventsVoiceSco1 = 0;

15 var numEventsVoiceSco2 = 0;

16 var numPitchesEventVoiceSco1, numPitchesEventVoiceSco2;

17 var timeGap, wholeSecondEvents;

18 // joins common voices of two scores

19 for (var voice = 0; voice < minVoices; voice++) {

20 numEventsVoiceSco1 = p2g(scoEncPhen1[posSco1]);

21 numEventsVoiceSco2 = p2g(scoEncPhen2[posSco2]);

22 readCurrentVoiceDur = sco1data.metadata.rhythmicDurationsPerVoice[voice] * 0.001;

89

Genotype functions
4.3. Formal structures

23 timeGap = largestVoiceDur - readCurrentVoiceDur;

24 wholeSecondEvents = Math.trunc(timeGap);

25 // updates total events in merged voice

26 if (timeGap > 0) {

27 mergedPhenotype.push(g2p(

28 numEventsVoiceSco1 + numEventsVoiceSco2 + wholeSecondEvents + 1));

29 }

30 else {

31 mergedPhenotype.push(g2p(numEventsVoiceSco1 + numEventsVoiceSco2));

32 }

33 // measures total voice dur to add a silent element to fill the voice gaps

34 currentVoiceDur = 0;

35 // copies first score voice

36 for (var event = 0; event < numEventsVoiceSco1; event++) {

37 posSco1++; mergedPhenotype.push(scoEncPhen1[posSco1]);

38 currentVoiceDur += p2n(scoEncPhen1[posSco1]);

39 posSco1++; mergedPhenotype.push(scoEncPhen1[posSco1]);

40 numPitchesEventVoiceSco1 = p2g(scoEncPhen1[posSco1]);

41 for (var pitch = 0; pitch < numPitchesEventVoiceSco1; pitch++) {

42 posSco1++; mergedPhenotype.push(scoEncPhen1[posSco1]);

43 }

44 posSco1++; mergedPhenotype.push(scoEncPhen1[posSco1]);

45 posSco1++; mergedPhenotype.push(scoEncPhen1[posSco1]);

46 for (var idx = 0; idx < eventExtraParameters; idx++) {

47 posSco1++; mergedPhenotype.push(scoEncPhen1[posSco1]);

48 }

49 }

50 // adds needed events to fill the gap until the end of first score block

51 // adds 1-second silent events (to enable big gaps no matter how long it is)

52 if (timeGap > 0) {

53 for (var silentEvent = 0; silentEvent < wholeSecondEvents; silentEvent++) {

54 mergedPhenotype = mergedPhenotype.concat([n2p(1 * playbackRate),

55 0.618034, 0.95, 0.612134, 0]).concat(silentEventsExtraParams);

56 }

57 // adds a last silent element adding the remaining time left

58 mergedPhenotype = mergedPhenotype

59 .concat([n2p((timeGap - wholeSecondEvents) * playbackRate), 0.618034, 0.95,

0.612134, 0]).concat(silentEventsExtraParams);

60 }

61 // copies second score voice

62 for (var event = 0; event < numEventsVoiceSco2; event++) {

63 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

64 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

65 numPitchesEventVoiceSco2 = p2g(scoEncPhen2[posSco2]);

66 for (var pitch = 0; pitch < numPitchesEventVoiceSco2; pitch++) {

67 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

68 }

90

Genotype functions
4.3. Formal structures

69 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

70 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

71 for (var idx = 0; idx < eventExtraParameters; idx++) {

72 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

73 }

74 }

75 posSco1++;

76 posSco2++;

77 }

78 // adds rest of voices if needed, distinguishing two cases: first score has more voices

than second one and vice versa

79 if (numVoicesSco1 >= numVoicesSco2) {

80 // copies the remaining voices without changes

81 while (posSco1 < scoEncPhen1.length) {

82 mergedPhenotype.push(scoEncPhen1[posSco1]); posSco1++;

83 }

84 }

85 else {

86 wholeSecondEvents = Math.trunc(largestVoiceDur); // * playbackRate);

87 var numRemainingVoices = numVoicesSco2 - numVoicesSco1;

88 for (var voice = 0; voice < numRemainingVoices; voice++) {

89 // adds all needed silent evets to start voices' events just after first score

90 numEventsVoiceSco2 = p2g(scoEncPhen2[posSco2]);

91 // increments voice length to include silent events at the beginning

92 mergedPhenotype.push(g2p(numEventsVoiceSco2 + wholeSecondEvents + 1)); posSco2++;

93 // adds one second silent events (to enable big gaps no matter how long it is)

94 for (var silentEvent = 0; silentEvent < wholeSecondEvents; silentEvent++) {

95 mergedPhenotype = mergedPhenotype

96 .concat([n2p(1 * playbackRate), 0.618034, 0.95, 0.612134, 0])

97 .concat(silentEventsExtraParams);

98 }

99 // adds a last silent element adding the remaining time left

100 mergedPhenotype = mergedPhenotype

101 .concat([n2p((largestVoiceDur - wholeSecondEvents) * playbackRate),

102 0.618034, 0.95, 0.612134, 0]).concat(silentEventsExtraParams);

103 for (var event = 0; event < numEventsVoiceSco2; event++) {

104 // adds duration

105 mergedPhenotype.push(scoEncPhen2[posSco2]); posSco2++;

106 numPitchesEventVoiceSco2 = p2g(scoEncPhen2[posSco2]);

107 // adds number of pitches

108 mergedPhenotype.push(scoEncPhen2[posSco2]); posSco2++;

109 // adds pitches

110 for (var pitch = 0; pitch < numPitchesEventVoiceSco2; pitch++) {

111 mergedPhenotype.push(scoEncPhen2[posSco2]); posSco2++;

112 }

113 // adds articulation

114 mergedPhenotype.push(scoEncPhen2[posSco2]); posSco2++;

91

Genotype functions
4.3. Formal structures

115 // adds intensity

116 mergedPhenotype.push(scoEncPhen2[posSco2]); posSco2++;

117 for (var idx = 0; idx < eventExtraParameters; idx++) {

118 posSco2++; mergedPhenotype.push(scoEncPhen2[posSco2]);

119 }

120 }

121 }

122 }

123 return mergedPhenotype;

124 };

Listing 17: Implementation of mergeScores auxiliary function

The following genotype, in Listing 18, uses sConcatS to join two scores that, in turn,
vertically overlay two voices each. Figure 16 displays the generated score, marking its
breakdown into its elements.

1 sConcatS(

2 s2V(

3 vMotif(

4 ln(0.125, 0.625, 0.25),

5 lm(72, 71, 70),

6 la(60, 50, 100),

7 li(50, 70, 50)),

8 vMotif(

9 ln(1, 2),

10 lm(60, 67),

11 la(10, 50),

12 li(50, 100))),

13 s2V(

14 vMotif(

15 ln(1, 2),

16 lm(69, 77),

17 la(10, 50),

18 li(50, 100)),

19 vMotif(

20 ln(0.125, 0.625, 0.25),

21 lm(65, 64, 63),

22 la(60, 50, 100),

23 li(50, 70, 50))))

Listing 18: Concatenated scores with sConcatS

92

Genotype functions
4.4. Deterministic and random processes

0 1 2 3 4 5 6

sConcatS

s2V

vMotif

s2V

vMotif

vMotifvMotif

0 1 2 3 4 5 6

score
voice-1

voice-2

genotype formal structure

phenotype flattened structure
evalExpr

Figure 16: Simple score created with sConcatS. As in the preceding figures, blue indicates a voice structure,
and green represents a score. The borderline indicates rhythmic duration, while the fill color
indicates the time of effective sound. Notice how the concatenation of the second score created
with s2V occurs at the limit of the rhythmic duration of the first, even if there are no sounding
notes. As a voice is always a concatenation of events without gaps, in the joining process, silent
events are created to fill the discontinuities. The red highlights indicate these newly introduced
silent events (whose intensity = 0). Given that there is a maximum duration for events, as many
one-second duration items (plus a fraction of a second if required) are added as needed to avoid
that limitation.

4.4. Deterministic and random processes

To ensure precise tuning of the results, the generation of a phenotype must be a re-
peatable and deterministic process. Due to its dependency on each browser’s implemen-
tation, JavaScript currently does not include its seeded random generator. To achieve
repeatable randomness, several auxiliary functions have been incorporated. The determi-
nistic generation of uniformly distributed values is accomplished using mulberry32 and
mulberry32Local,50 For generating values with a Gaussian distribution, the auxiliary func-

50Both auxiliary functions are based on an adaptation of the Mulberry32 algorithm, adapting an implemen-
tation taken from https://stackoverflow.com/questions/521295/seeding-the-random-number-generator
-in-javascript. It is not an exceedingly good generator for millions of values, but it is highly efficient in
generation time, which is why it has been chosen. For the generation of music scores, it’s rarely necessary
to have such a high number of random values where the repetition cycle of this method can be perceived.

93

https://stackoverflow.com/questions/521295/seeding-the-random-number-generator-in-javascript
https://stackoverflow.com/questions/521295/seeding-the-random-number-generator-in-javascript

Genotype functions
4.4. Deterministic and random processes

tion gaussianRandLocal adapts an implementation of the Box-Muller transform.51 Some
of the functions that introduce randomness are conditioned by a global seed value, which
is part of the initial conditions documented in Section 5.5.

Genotype functions that generate more than one random value have their independent
seed. For instance, lRnd and lGaussianRnd, which create random lists of generic parameters,
take two arguments: a local seed value and the number of items in the list. To approxi-
mately visualize the distribution generated by these random generators, different outcomes
of the expressions lRnd(p(0.740253),q(31)) and lGaussianRnd(p(0.740253),q(31)) are
juxtaposed in Figure 17.

Figure 17: Random lists produced by lRnd and lGaussianRnd. When displaying the phenotype of generic
parameters, the function wrapEncodedPhenotype employs them for all specific parameters, en-
abling comparison across all main dimensions of the event. Consequently, visualizing a larger
generic parameter will result in longer duration, higher pitch, longer articulation, and increased
dynamics. The Gaussian distribution combines its effect with the inherent Gaussian-like mapping
of the specific parameters (discussed in Section 3.5), resulting in a significantly reduced dispersion
around the central values.

Each local seed affects only the function to which it is an argument and is not influenced
by the global seed of the specimen.

51Adapted from https://stackoverflow.com/questions/25582882/javascript-math-random-normal-distr
ibution-gaussian-bell-curve.

94

https://stackoverflow.com/questions/25582882/javascript-math-random-normal-distribution-gaussian-bell-curve
https://stackoverflow.com/questions/25582882/javascript-math-random-normal-distribution-gaussian-bell-curve

Genotype functions
4.5. Repetition and iteration

4.5. Repetition and iteration

Numerous musical processes can be conceived as repetitions, variations, or transforma-
tions of any kind. Here, I will only discuss the fundamental details.

Undoubtedly, the simplest of these procedures is mere repetition. The key distinction
to be made here is between the repetition of an element and the repetition of a process,
referred to as iteration. Let’s compare two very similar genotypes in Figure 18, where
two parallel processes are depicted: in red, the result of executing vRepeatE, which repeats
an event several times; in blue, the application of vIterE, which iterates the subgenotype
of an event. In both cases, the event contains random elements. While in repetition, the
random characteristics are repeated, in iteration, they are recalculated each time, resulting
in different events.

Figure 18: Comparison between repetition and iteration of the same event. The red voice has been generated
using the genotype vRepeatE(e(nRnd(),mRnd(),a(50),i(60)),q(70)). Once an event with
random duration and pitch has been generated, it is repeated identically. In blue, the result
of executing vIterE(e(nRnd(),mRnd(),a(800),i(60)),q(70),p(0.26)), which iterates the
reevaluation of an event, also with random duration and pitch. It can be observed that the intensity,
represented by the color brightness, remains fixed. The articulation (represented by horizontal
lines) is also constant, although since it depends on the duration, the lines have different lengths;
vIterE requires an additional parameter which will be the seed value for the random regeneration
of the event.

The repetition is a straightforward operation within the genotype function. However,
iteration involves the juxtaposition of a series of reevaluations of the subgenotype taken
as an argument. In Listing 19, with the implementation of the function vIterE, it can
be observed how this subprocess is carried out. In line 13, we encounter the expression
evalExpr(event.decGen).encPhen: first, it takes the key decGen, which holds the subgeno-
type’s own expression as a string, evaluates it using evalExpr, and from the generated
subspecimen, it retrieves the encPhen key, where the phenotype generated by the reeva-
luation is found.

95

Genotype functions
4.5. Repetition and iteration

1 indexGenotypeFunction("vIterE", "voiceF", 37, ["eventF", "quantizedF", "paramF"]);

2 vIterE = (event, iterations, seedValue) => {

3 var encodedFuncID = g2p(37);

4 var numIterations = adjustRange(Math.abs(p2q(iterations.encPhen[0])), 2, 1000);

5 // number of times rescaled to range [2, 1000], mapped according to the

6 // deviation from the center value 0.5 using the quantizedF map

7 if (numIterations > phenMaxLength) {

8 validGenotype = false;

9 if (verbosity) printLog("aborted genotype due to exceeding the max length");

10 return indexDecGens(evalExpr("v(" + defaultEvent + ")"));

11 }

12 reinitSeed(seedValue.encPhen[0]);

13 var iteratedEvent = [g2p(numIterations)].concat(flattenDeep(Array(numIterations).

fill().map(() => evalExpr(event.decGen).encPhen)));

14 return indexDecGens({

15 funcType: "voiceF",

16 encGen: flattenDeep([1, encodedFuncID, event.encGen, iterations.encGen,

seedValue.encGen, 0]),

17 decGen: "vIterE(" + event.decGen + "," + iterations.decGen + "," +

seedValue.decGen + ")",

18 encPhen: iteratedEvent,

19 phenLength: numIterations,

20 phenVoices: 1,

21 rhythm: event.rhythm,

22 timegrid: event.timegrid,

23 analysis: event.analysis

24 });

25 };

Listing 19: Implementation of subgenotype iteration vIterE

Let’s consider one more example to clarify how the reevaluation of an expression
caused by an iterative function works. In Listing 20, the function lIterL reevaluates 16
times the subgenotype l3P(p(0.37),p(0.41),pGaussianRnd()), of type listF. In this sub-
genotype, there are two fixed values. However, the function pGaussianRnd() will generate
different random parameters in each iteration. The additional parameter in line 7 is the
seed value that allows repeatability of the entire process.

96

Genotype functions
4.6. Harmony

1 lIterL(

2 l3P(

3 p(0.37),

4 p(0.41),

5 pGaussianRnd()),

6 q(16),

7 p(0.21827))

Listing 20: Iteration of lists with lIterL

In the musical score of Figure 19, the effect of these reevaluations can be easily observed.
The melodic line shows the cycle of two fixed pitches plus a third that varies in each
iteration.

Figure 19: Iteration of a list containing a random item. Similar to previous examples, the conversion to sheet
music of unassigned generic parameters is done by applying them to all dimensions of the event.
Therefore, even though the three-element cycle in varied repetition can be mainly observable in
pitch changes, it is also reflected in duration, dynamics, and articulation.

4.6. Harmony

The function type harmonyF belongs to the category of specific functions dedicated to
covering a particular aspect of constructing musical structures. In programming languages
for music, there are numerous paradigms, nomenclatures, and different approaches for
dealing with harmony. As in other aspects of GenoMus design, the architecture allows for
a wide variety of treatments while also facilitating the most common uses. Nevertheless,
this section presents just one way to organize harmonic structure. Nothing prevents the
incorporation of other harmonyF functions to provide alternative treatments.

The central concept here is the harmonic grid, defined as the set of pitches that the
pitch parameter of events will adhere to. A harmonic grid can affect a portion or an entire
musical piece. To compute this set of eligible pitches, various hierarchies of harmonic
organization are taken into consideration, interacting with each other to determine this

97

Genotype functions
4.6. Harmony

pitch set as an array under the variable harmonicGrid. Table 6 displays and explains the
arguments required to create a harmonic grid.

Key Description Function type

tuning Tuning employed. Set of all pitches available within the
octave. This set precisely specifies the temperament using
floating-point numbers. The remaining keys use integers to
ultimately refer to the position occupied by each pitch in
this set, so that the harmonicGrid ultimately adjusts them
to this tuning.

lmidipitchF

scale Set of all eligible pitches to form modes. lmidipitchF

mode Subset of eligible pitches from the scale, typically used to
build diatonic sequences.

lmidipitchF

chord Subset of eligible pitches from the mode, usually used to
construct chords or aggregates of a few different pitches.

lmidipitchF

root Fundamental pitch to which the harmonicGrid is
transposed.

midipitchF

chromaticism Level of permissiveness in using pitches outside the
chord. If chromaticism = 0.5, strictly only the chord values
are used; if < 0.5, notes are progressively reduced until
unison (0); if > 0.5, more notes are introduced, first from
the mode and then from the scale, until all eligible pitches
(1) are reached.

paramF

octavation Range extension in which pitches can be chosen. If
octavation = 0.5, only one octave is used. Higher or lower
values increase the range towards higher or lower octaves,
respectively.

paramF

Table 6: Arguments to configure a harmonicGrid. For more detailed information on how it is precisely
calculated, please check the implementation of the auxiliary function calculateHarmonicGrid in
the source code.

The identity function h generates a harmonic grid and returns it within a subspecimen
containing this information under the key harmony. Consider, for example, the expression
in Listing 21:

98

Genotype functions
4.6. Harmony

1 h(

2 lm(0,1,2,3,4,5,6,7,8,9,10,11),

3 lm(0,1,2,3,4,5,6,7,8,9,10,11),

4 lm(0,2,3,5,7,9,11),

5 lm(0,3,7,9,11),

6 m(40),

7 p(0.5),

8 p(0.7))

Listing 21: Identity function h of harmonyF type

This will return the Object shown in Listing 22, where, in addition to the harmonicGrid

itself, the arguments that originated it are stored, so they can be used by the parent
functions if necessary.

1 {

2 funcType: 'harmonyF',

3 encGen: [1, 0.652476,1, 0.506578, 0.53, 0, 0.53, 0.000552, 0.53, 0.001148, 0.53,

... 92 more items],

4 decGen: 'h(lm(0,1,2,3,4,5,6,7,8,9,10,11),lm(0,1,2,3,4,5,6,7,8,9,10,11),lm

(0,2,3,5,7,9,11),lm(0,3,7,9,11),m(40),p(0.5),p(0.7))',

5 encPhen: [0.130886, 0.161479, 0.210422, 0.238502, 0.268956, 0.285042, 0.336467,

0.411143, 0.45028, 0.490026, 0.509975, 0.569394, 0.645439, 0.681175, 0.714958,

0.731044, 0.775839,0.82718, 0.849282, 0.869114, 0.878216],

6 phenLength: 1,

7 phenVoices: 1,

8 harmony: {

9 tuning: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],

10 scale: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],

11 mode: [0, 2, 3, 5, 7, 9, 11],

12 chord: [0, 3, 7, 9, 11],

13 root: 40,

14 chromaticism: 0.5,

15 octavation: 0.7,

16 harmonicGrid: [40, 43, 47, 49, 51, 52, 55, 59, 61, 63, 64, 67, 71, 73, 75, 76,

79, 83, 85, 87, 88]

17 }

18 }

Listing 22: Subspecimen of a harmonyF function

99

Genotype functions
4.6. Harmony

Figure 20: Steps to assemble a harmonicGrid. In red, pitches specifically indicated in the arguments of the
function h. In blue, pitches derived from the different transformation steps up to the final set
of eligible pitches. In this example, after defining the standard equal-tempered tuning and the
complete chromatic scale as available pitches, the mode configures a harmonic minor scale, and the
chord restricts it to only specific notes. Everything is transposed to the MIDI note 40 (E-2), and
the values of chromaticism and octavation determine the use of all notes from the subset and
an extension of three octaves upward.

100

Genotype functions
4.6. Harmony

Figure 21: Influence of the degree of chromaticism in the harmonicGrid of Figure 20. In black, pitches
specific to the chord; in gray, pitches that fill the spaces towards maximal chromatic density.

101

Genotype functions
4.6. Harmony

Figure 20 details the step-by-step process until determining the harmonicGrid. Mean-
while, Figure 21 illustrates the influence that the parameter chromaticism exerts on the
selection of the set of pitches that will ultimately be eligible. Interestingly, this parameter
is fluid since in much music, it plays with the concept of real versus strange notes of a har-
mony, distinguishing between the pitches that make up a recognizable chord or scale and
the sounds that deviate from these structures, either for melodic reasons or to introduce
tension through dissonance at various levels of disruption.

Leveraging the auxiliary function harmonicGridFramework, it is easy to obtain the har-
monic grid of the desired chord, mode, or scale. A family of harmonyF functions has been
incorporated, which already returns harmonic grids for the main types of diatonism and
chords. Listing 23 shows the definition of hOctatonicScale, which creates the grid for the
semitone-tone scale across the entire range.52 The only parameter of this function is root,
which determines the initial pitch class.

1 indexGenotypeFunction("hOctatonicScale", "harmonyF", 179, ["midipitchF"]);

2 hOctatonicScale = (root) => harmonicGridFramework(

3 "hOctatonicScale",

4 g2p(179),

5 lm(0,1,3,4,6,7,9,10,11),

6 root);

Listing 23: Definition of a function to create harmonic grids with octatonic scales

In Figure 22, the result of readjusting all the notes of a score to a harmonic grid can
be seen. In this case, sHarmonicGrid takes a score and a harmonicGrid as arguments, and
returns the same music adapted to the new harmony, which in the example is a simple
pentatonic scale generated with hPentatonicScale.

52Also known as the second of Messiaen’s modes of limited transposition.

102

Genotype functions
4.6. Harmony

Figure 22: Adjustment of an entire score to a pentatonic scale with sHarmonicGrid. Two identical excerpts,
except that in the second one, all pitches have been remapped to B♭ major pentatonic.

Other ways of easily creating harmonic structures are based on pitch class set theory.53

The function hPCSet takes a pitch class set (PCS) and a pitch as the root to generate a
harmonic grid across the entire range. Listing 24 combines two voices with nearly identical
processes. Both involve the iteration of random four-note chords, and the resulting output
is passed as an argument to vHarmonicGrid, which then adjusts it to a PCS. Both voices
use the same PCS, {0, 6, 11}, but in the second voice it is transposed up by 3 semitones,
resulting in the new set {3, 9, 14}mod 12 ≡ {3, 6, 9}.

53Pitch class set theory is a method of musical analysis used to analyze and categorize compositions based
on their pitch content. This theory considers the pitch classes of notes, often ignoring aspects like octave
placement, rhythm, and timbre. It’s particularly useful in analyzing atonal music, where traditional harmonic
analysis might not be applicable. The theory groups pitches into sets and examines the relationships and
structures within these sets.

103

Genotype functions
4.6. Harmony

1 s2V(

2 vHarmonicGrid(

3 vIterE(

4 e4Chord(n(0.2),mRnd(),mRnd(),mRnd(),mRnd(),aRnd(),iRnd()),

5 q(24),

6 pRnd()),

7 hPCSet(

8 lm(0, 6, 11),

9 m(0))),

10 vHarmonicGrid(

11 vIterE(

12 e4Chord(n(0.2),mRnd(),mRnd(),mRnd(),mRnd(),aRnd(),iRnd()),

13 q(20),

14 pRnd()),

15 hPCSet(

16 lm(0, 6, 11),

17 m(3))))

Listing 24: Genotype with two simultaneous harmonic grids based on pitch class sets

Figure 23: Score with two transpositions of a pitch class set as harmonic grids. Two similar voices, in the
second one, all pitches have been remapped to B♭ major pentatonic. There is also a 4 ∶ 5 relationship
in the duration of the events in each voice, resulting in observable polyrhythm. Let’s remember that
the internal rhythmic duration is independent of the effective duration resulting from applying
the articulation parameter: in each voice, all chords appear in a perfectly regular rhythm, although
their audible durations, indicated by the horizontal lines, vary randomly.

104

Genotype functions
4.7. Generative subprocesses

Finally, it should be noted that there exists a global playback option that affects the
pitches of an entire phenotype. The playbackOption stepsPerOctave determines the divi-
sion of the octave in equal intervals. The default value is stepsPerOctave = 12, representing
the usual chromatic scale. By combining this value and the pitch precision of the bach.roll
where the score is displayed, interesting effects can be achieved, as it will be explored
more thoroughly in Section 6.4.3.

4.7. Generative subprocesses

Besides a declarative style more typical of traditional writing techniques, the implemen-
tation of generative processes, very common since the mid-20th century, is straightforward.
The combination of traditional and algorithmic procedures is among the initial objectives
of this implementation. As a proof of concept, I tested the integration of some of the
already classical algorithms for generative music here.

Brownian motion creates random paths from an initial point based on displacements
of a defined maximum amplitude. The first two lines in the definition of the function
lBrownian in Listing 25 are quite self-explanatory in describing the parameters it uses and
the required types:

1 indexGenotypeFunction("lBrownian", "listF", 266, ["paramF", "paramF", "quantizedF",

"paramF"]);

2 lBrownian = (start, maxStep, numSteps, seedValue) => {

Listing 25: Beginning of the definition of the generative function lBrownian

Given that the function is of type paramF and there are no conversions to specific types,
by accessing the key encPhen of the subspecimen, we can print the generated sequence in
the console by evaluating lBrownian(p(0.5),p(0.1),q(100),p(0.1234)).encPhen, which
returns [0.5, 0.514419, 0.421108, 0.422797, 0.509397, ... 95 more items].

To avoid creating different versions of these generative functions for each specific
parameter, I added converters that take a list of generic parameters and encapsulate them
into lists of the specific type needed. Listing 26 contains the function lConverterFramework

that allows creating all list conversions. In lines 10 and 11, the function lnWrap is declared;
it wraps a generic list as a list with values of type notevalueLeaf.

105

Genotype functions
4.7. Generative subprocesses

1 var lConverterFramework = (functionName, functionTyp, functionIndex, paramListFunc)

=> indexDecGens({

2 funcType: functionTyp,

3 encGen: flattenDeep([1, g2p(functionIndex), paramListFunc.encGen, 0]),

4 decGen: functionName + "(" + paramListFunc.decGen + ")",

5 encPhen: paramListFunc.encPhen,

6 phenLength: 1,

7 phenVoices: 1

8 });

9

10 indexGenotypeFunction("lnWrap", "lnotevalueF", 319, ["listF"]);

11 lnWrap = (paramList) => lConverterFramework("lnWrap", "lnotevalueF", 319, paramList)

Listing 26: Framework auxiliary function to create list converters

Let’s see an example of usage, creating a motif of 100 events in which all dimensions
are generated by independent Brownian sequences. In Listing 27, it can be observed that
the seed value is generated by pRnd, therefore, it will be different for each call to lBrownian.
The value of these seeds is determined by the global seed value of the initial conditions.
Figure 24 compares three fragments generated with the same genotype but with different
seed values.

1 vMotif(

2 lnWrap(lBrownian(p(0.5),p(0.2),q(100),pRnd())),

3 lmWrap(lBrownian(p(0.5),p(0.2),q(100),pRnd())),

4 laWrap(lBrownian(p(0.5),p(0.2),q(100),pRnd())),

5 liWrap(lBrownian(p(0.5),p(0.2),q(100),pRnd())))

Listing 27: vMotiv with lBrownian generative functions

The Equation 26 is the logistic map, a classic recursive equation in the study of chaotic
deterministic systems:54

xn+1 = rxn(1− xn) (26)

where r ∈ (0, 4) is a constant that determines the degree of apparent randomness.

54Unlike Brownian motion, this is an intrinsically repeatable process, even though it may seem random in its
evolution, and in fact, it can be used as a pseudo-random process generator that allows a gradual transition
from monotonic repeatability to chaos.

106

Genotype functions
4.7. Generative subprocesses

Figure 24: Three versions of a vMotiv with lBrownian generative functions using different seed values.
It can be observed how all fragments start with the same initial event, and from there, each of their
parameters varies according to different Brownian movements.

Listing 28 displays part of the implementation of lLogisticMap. The last argument
paramF represents this constant r that determines how chaotic the generated sequence
will be. Since the interesting behavior of the system occurs when r ∈ (3.5, 4), in line 4 the
normalized range of the generic parameter is rescaled. These internal remappings of input
and output of generic parameters will be necessary for many generative processes.

1 indexGenotypeFunction("lLogisticMap", "listF", 274, ["paramF", "paramF", "paramF",

"quantizedF", "paramF"]);

2 lLogisticMap = (start, rangeMin, rangeMax, numSteps, growConstant) => {

3 ...

4 var rRemapped = rescale(growConstant.encPhen[0], 0, 1, 3.5, 4); // only uses

chaotic output of equation

5 ...

107

Genotype functions
4.8. Recursions with type recursiveF

6 for (var lmstep = 0; lmstep < totalSteps; lmstep++) {

7 chaosLine.push(rRemapped * chaosLine[lmstep] * (1 - chaosLine[lmstep]));

8 chaosLine[lmstep] = r6d(rescale(chaosLine[lmstep], 0, 1, rangeMin.encPhen[0],

rangeMax.encPhen[0]));

9 }

10 ...

11 }

Listing 28: Details of the implementation of a generative functions

Listing 29 shows a variation of the genotype in Listing 27. The r value of each evalua-
tion of the lLogisticMapis determined by the global seed. Figure 25 compares six different
phenotypes produced by this same genotype by varying that initial condition. The se-
quences demonstrate the tendency of this recursive process to create cycles with different
degrees of irregularity and moments of disruption.

1 vMotif(

2 lnWrap(lLogisticMap(p(0.5),p(0.1),p(0.9),q(100),pRnd())),

3 lmWrap(lLogisticMap(p(0.5),p(0.1),p(0.9),q(100),pRnd())),

4 laWrap(lLogisticMap(p(0.5),p(0.1),p(0.9),q(100),pRnd())),

5 liWrap(lLogisticMap(p(0.5),p(0.1),p(0.9),q(100),pRnd())))

Listing 29: vMotiv with lLogisticMap generative functions

4.8. Recursions with type recursiveF

Both examples from the previous section are recursive processes. However, they are
predefined algorithms, merely operating based on their arguments. The specific type of
genotype function, recursiveF, enables the metaprogramming mechanism itself to com-
pose new recursive equations by combining basic mathematical operations, thus opening
up a wide field of experimentation.55 To make this possible, it is necessary to create this
new family of functions with peculiar characteristics in handling their subspecimens.

55The exploration of recursion through metaprogramming of abstract mathematical expressions lies at the
core of the GenoMus project. The initial proof of concept for the general idea consisted of a prototype that
explored melodic and harmonic material from generatively created recursive equations. The quintet with
electronics, Threnody for Dimitris Christoulas, documented in Appendix B.1, is the practical realization of this
preliminary investigation.

108

Genotype functions
4.8. Recursions with type recursiveF

Similarly to what was seen earlier, recursive functions are created within listF func-
tions that contain them, and they output a sequence of generic parameters that will then
be applied to specific dimensions of events through the proper converters.

Figure 25: Sequences generated with lLogisticMap. Once again, the six fragments are phenotypes generated
from the same genotype by varying the global seed value, which in turn determines the constant
of the logistic map.

Listing 30 shows the implementation of lRecursioOrder2, which takes as the first ar-
gument a recursive equation, the next two arguments are the initial items of the sequence,
which will be referenced within the equation itself, and finally, the last argument, quanti-
fying how many iterations will be calculated.

1 indexGenotypeFunction("lRecursioOrder2", "listF", 1004, ["recursiveF", "paramF",

"paramF", "quantizedF"]);

2 lRecursio2ndOrder = (recursiveExpression, firstTerm, secondTerm, totIterations) => {

3 var encodedFuncID = g2p(1004);

109

Genotype functions
4.8. Recursions with type recursiveF

4 initTermsLength = 2;

5 var totalNewTerms = p2q(totIterations.encPhen) + initTermsLength;

6 terms = [

7 p2pi(firstTerm.encPhen[0]),

8 p2pi(secondTerm.encPhen[0])

9];

10 var stopRecursion = false;

11 var idx = initTermsLength;

12 do {

13 newTerm = modPi(evalExpr(recursiveExpression.recursiveExpr));

14 if (isNaN(newTerm)) { // in case a NaN is produced, recursion ends

15 stopRecursion = true;

16 }

17 else {

18 terms.push(newTerm);

19 }

20 idx++;

21 } while (

22 stopRecursion == false

23 && idx < totalNewTerms

24 && arrayEquals(

25 [terms[idx - 1]].map(x => r2d(x)),

26 [terms[idx - 2]].map(x => r2d(x))

27) == false

28); // avoids long stacked sequences

29 return indexDecGens({

30 funcType: "listF",

31 encGen: flattenDeep([1, encodedFuncID, recursiveExpression.encGen,

32 firstTerm.encGen,

33 secondTerm.encGen,

34 totIterations.encGen, 0]),

35 decGen: "lRecursio2ndOrder(" + recursiveExpression.decGen + "," +

36 firstTerm.decGen + "," +

37 secondTerm.decGen + "," +

38 totIterations.decGen + ")",

39 encPhen: terms.map(x => r6d(pi2p(x))),

40 phenLength: 1,

41 phenVoices: 1,

42 });

43 };

Listing 30: Function lRecursioOrder2 with recursiveF argument

110

Genotype functions
4.8. Recursions with type recursiveF

Let’s point out these key features:

For this entire family of functions, by convention, the series of calculated values is
stored in an array within the global variable terms, external to the function itself.
Thus, to refer to the current penultimate value of the sequence, for example, the
expression terms[terms.length - 2 % initTermsLength - 1] should be used. The
global variable initTermsLength is used to adjust any value referring to a previous
term of the sequence applying the modulo operator.

The function r functions as the leaf value of these recursive expressions, but actually
takes an integer argument through a quantizedF function, indicating which previous
element of the stored sequence is taken for the reevaluation of the equation (at
line 13).

The initial values of each sequence, provided here by the arguments firstTerm and
secondTerm, will be the first elements of the array terms, but first, a value conversion
occurs using p2pi. This conversion is a remapping from the normalized range [0, 1]
to the interval [−π, π]. This is done so that trigonometric functions, relevant in
obtaining sequences with interesting patterns, can operate in their full range. At
line 39, the inverse conversion of the entire sequence is performed using pi2p to
return to the normalized range specific to the generic parameters.

The subspecimens of the recursiveF functions are coordinated with this internal archi-
tecture. For instance, the function r(q(2)) indicates the penultimate item of the recursive
sequence and, unlike the rest of the types, returns in the key recursiveExpression a
string containing the evaluable expression expected by its parent function, as shown in
Listing 31:

1 {

2 funcType: 'recursiveF',

3 encGen: [1, 0.033989, 1, 0.416408, 0.58, 0.552568, 0, 0],

4 decGen: 'r(q(2))',

5 phenLength: 1,

6 phenVoices: 1,

7 recursiveExpr: 'terms[terms.length - 2 % initTermsLength - 1]'

8 }

Listing 31: Simplest subspecimen of a recursiveF function

111

Genotype functions
4.8. Recursions with type recursiveF

Internally, the remaining recursiveF functions progressively edit this expression to con-
struct a string according to the variables expected by lRecursioOrder2. Therefore, to gener-
ate eighty elements of a Fibonacci-like sequence, summing the two previous terms starting
from two initial terms, it is required the subgenotype rAdd(r(q(1)),r(q(2))), which re-
turns a string: ’terms[terms.length - 1 % initTermsLength - 1] + terms[terms.length

- 2 % initTermsLength - 1]’. The only remaining task is to determine the initial terms
and the number of iterations, forming the following genotype:

1 lRecursioOrder2(

2 rAdd(// Fibonacci-like recursive equation

3 r(q(1)),

4 r(q(2))),

5 p(0.515915), // sequence 1st term

6 p(0.515915), // sequence 2nd term

7 q(80)) // number of iterations

Listing 32: Genotype with a Fibonacci-like recursion

Now, let’s consider a randomly written genotype, depicted in Listing 33. There are two
recursive equations, mapped to values midipitch and intensity using lmWrap and liWrap

respectively. Each recursion is framed within the code.

1 s(

2 vPerpetuumMobileLoop(

3 n(0.05),

4 lmWrap(

5 lRecursioOrder4(

6 rTanh(

7 rCos(

8 rSubtract(

9 rSubtract(

10 r(q(9)),

11 r(q(2))),

12 rSubtract(

13 r(q(2)),

14 r(q(-4)))))),

15 p(0.495282),

16 p(0.605767),

17 p(0.450958),

18 pGaussianRnd(),

19 q(46))),

112

Genotype functions
4.8. Recursions with type recursiveF

20 la(5),

21 liWrap(

22 lRecursioOrder3(

23 rHypot(

24 rDivide(

25 rCosh(

26 rHypot(

27 r(q(2)),

28 r(q(1)))),

29 rAdd(

30 rSin(

31 r(q(-12))),

32 r(q(-7)))),

33 rTan(

34 rTan(

35 r(q(0))))),

36 p(0.743),

37 p(0.32),

38 p(0.63),

39 q(700)))))

Listing 33: Genotype with recursions

If we extract and evaluate separately the first recursion taken by lRecursioOrder4 as
its first argument (lines 6-14), which is the subgenotype

rTanh(rCos(rSubtract(rSubtract(r(q(9)),r(q(2))),rSubtract(r(q(2)),r(q(-4)))))),

the returned Object, shown in Listing 34, contains the expression that will be evaluated
within the recursiveExpr key.

113

Genotype functions
4.8. Recursions with type recursiveF

1 {

2 funcType: 'recursiveF',

3 encGen: [1, 0.304499, 1, 0.450397, 1, 0.978261, 1, 0.978261, 1, 0.033989, 1,

0.416408, 0.58, 0.704833, 0, 0, 1, 0.033989, 1, 0.416408, 0.58, 0.552568, 0, 0,

0, 1, 0.978261, 1, 0.033989, 1, 0.416408, 0.58, 0.552568, 0, 0, 1, 0.033989, 1,

0.416408, 0.58, 0.397584, 0, 0, 0, 0, 0, 0],

4 decGen: 'rTanh(rCos(rSubtract(rSubtract(r(q(9)),r(q(2))),rSubtract(r(q(2)),r(q(-4)

)))))',

5 phenLength: 1,

6 phenVoices: 1,

7 recursiveExpr: 'Math.tanh(Math.cos(terms[terms.length - 9 % initTermsLength - 1] -

terms[terms.length - 2 % initTermsLength - 1] - terms[terms.length - 2 %

initTermsLength - 1] - terms[terms.length - 4 % initTermsLength - 1]))'

8 }

Listing 34: Subspecimen returned by a compound recursion

Translated into standard notation, this recursive process represents the Equation 27:

xn = tanh (cos((xn−1 − xn−3)− (xn−3 − xn−2))) (27)

From the console, the recursiveF key can be called to directly retrieve the resulting
compound expression. For the second recursive equation enclosed in lines 23-35 of List-
ing 33, this property is obtained by evaluating

rHypot(rDivide(rCosh(rHypot(r(q(2)),r(q(1)))),rAdd(rSin(r(q(-12))),r(q(-7)))),

rTan(rTan(r(q(0))))).recursiveExpr

which returns the string

’Math.hypot(Math.cosh(Math.hypot(terms[terms.length - 2 % initTermsLength - 1],

terms[terms.length - 1 % initTermsLength - 1])) / Math.sin(terms[terms.length -

12 % initTermsLength - 1]) + terms[terms.length - 7 % initTermsLength - 1],

Math.tan(Math.tan(terms[terms.length - 0 % initTermsLength - 1])))’

that will be passed to lRecursioOrder3 as its first argument. Equation 28 represents its
translation into standard notation. The beginning of the resulting phenotype is found in
Figure 26.

xn =

¿
Á
Á
ÁÀ

cosh2
√

x2
n−3 + x2

n−2

sin2(xn−1)+ xn−2
+ tan2 (tan(xn−1)) (28)

114

Genotype functions
4.9. Internal autoreferences

Figure 26: Score generated using recursiveF functions. To better visualize the fluctuations in the pattern
generated by the recursive expression of Equation 27 applied to the pitches, a quarter-tone scale
has been chosen by setting stepsPerOctave = 24 as playbackOption.

4.9. Internal autoreferences

4.9.1. The importance of self-reference in music

In the construction of a musical composition, self-reference is an essential procedure.
Fundamental mechanisms such as repetition, variation, and transposition, whether of mi-
nimal elements or large sections, can be considered as internal self-references within the
structure. The sense of coherence in the discourse is partly achieved by playing with the
listener’s memory and their ability to recognize previous elements, whether identical or
transformed. Musical memory and pattern recognition operate at all temporal levels, from
milliseconds to hours.

Since the inception of the project, the ability to represent multiple self-references at
all structural levels has been considered an essential feature. In designing the syntax of
genotypes, various practical approaches have been tested, each with its pros and cons.
While meta-programming of functional trees may lead to unforeseen outcomes, the in-
corporation of self-references that have an effect throughout the evaluation process poses
several additional problems that must be well resolved. The system described below has
proven to be the most reliable, especially due to one characteristic: naturally, as the nodes
of the functional tree are evaluated, all available subgenotypes are stored. This ensures
that only previous elements in the constructive process can be referenced. This sets a good
analogy with what also happens in listening because memory can only establish links
between patterns to the past, and to what has already been perceived, to construct the
mental image of the musical discourse.

115

Genotype functions
4.9. Internal autoreferences

4.9.2. Subgenotype indexing

In the context of this model, autoreference denotes the reuse of parts of a functional
tree through a reference from another part of it. As the decoded genotype is evaluated, an
Object stored in the variable subGenotypes is written that stores the decoded subgenotypes
it contains. Consider, for example, the definitions of the lConcatL genotype function in
Listing 35, which takes two listF items and concatenates them:

1 indexGenotypeFunction("lConcatL", "listF", 41, ["listF", "listF"]);

2 lConcatL = (l1, l2) => indexDecGens({

3 funcType: "listF",

4 encGen: flattenDeep([1, g2p(41), l1.encGen, l2.encGen, 0]),

5 decGen: "lConcatL(" + l1.decGen + "," + l2.decGen + ")",

6 encPhen: l1.encPhen.concat(l2.encPhen)

7 });

Listing 35: Definition of lConcatL genotype function

In the architecture of a genotype function, before returning the constructed subspe-
cimen, it is sent to the auxiliary function indexDecGens. Its implementation, in Listing 36,
consists of checking if the decoded genotype contained in the property decGen already
exists in the Object held in the global variable subGenotypes; if it is a new expression, it is
included following those already indexed within the listing of the corresponding function
type.

1 var indexDecGens = subspecimen => {

2 // if subgenotype is found, returns subspecimen

3 var subgenotypeRepeated;

4 for (var idx = 0; idx < subGenotypes[subspecimen.funcType].length; idx++) {

5 subgenotypeRepeated = subspecimen.decGen.localeCompare(

6 subGenotypes[subspecimen.funcType][idx]);

7 if (subgenotypeRepeated == 0) return subspecimen;

8 }

9 // if subgenotype is new, indexes it and returns subspecimen back

10 subGenotypes[subspecimen.funcType].push(subspecimen.decGen);

11 return subspecimen;

12 };

Listing 36: Indexation of subgenotypes with indexDecGens

116

Genotype functions
4.9. Internal autoreferences

4.9.3. Minimal examples of internal autoreference

Let’s consider a minimal genotype in Listing 39, containing an autoreference to a
subgenotype of type score. In line 9, the expression sAutoref(1) will be replaced at
runtime by the first score subgenotype currently present in the subGenotypes library.

1 sConcatS(

2 s(

3 vPerpetuumMobileLoop(

4 n(0.2),

5 lm(60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72),

6 la(50, 100),

7 li(90, 80, 50))),

8 sHarmonicGrid(

9 sAutoref(1),

10 hPentatonicScale(

11 m(65))))

Listing 37: Internal autoreference to a score

Listing 38 displays the Object contained in the variable subGenotypes at the precise
moment when sAutoref(1) is evaluated. Note that there are subgenotypes, such as m(65),
that do not yet appear in the listing because they have not been evaluated.

1 {

2 scoreF: [

3 's(vPerpetuumMobileLoop(n(0.2),lm(60,61,62,63,64,65,66,67,68,69,70,71,72),la

(50,100),li(90,80,50)))',

4],

5 voiceF: [

6 'vPerpetuumMobileLoop(n(0.2),lm(60,61,62,63,64,65,66,67,68,69,70,71,72),la

(50,100),li(90,80,50))'

7],

8 eventF: [],

9 paramF: [],

10 listF: [],

11 notevalueF: ['n(0.2)'],

12 lnotevalueF: [],

13 midipitchF: [],

14 lmidipitchF: ['lm(60,61,62,63,64,65,66,67,68,69,70,71,72)'],

15 articulationF: [],

117

Genotype functions
4.9. Internal autoreferences

16 larticulationF: ['la(50,100)'],

17 intensityF: [],

18 lintensityF: ['li(90,80,50)'],

19 quantizedF: [],

20 lquantizedF: [],

21 goldenintegerF : [],

22 lgoldenintegerF : [],

23 harmonyF: [],

24 timegridF: [],

25 recursiveF: []

26 }

Listing 38: Example of subGenotypes Object

The output of this genotype is equivalent to the evaluation of what is shown in Lis-
ting 39. Within the code, the replication of the branch that occurs internally is framed.

1 sConcatS(

2 s(

3 vPerpetuumMobileLoop(

4 n(0.2),

5 lm(60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72),

6 la(50, 100),

7 li(90, 80, 50))),

8 sHarmonicGrid(

9 s(// effective substitution caused by 'sAutoref(1)'

10 vPerpetuumMobileLoop(

11 n(0.2),

12 lm(60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72),

13 la(50, 100),

14 li(90, 80, 50))),

15 hPentatonicScale(

16 m(65))))

Listing 39: Equivalent genotype after evaluating internal autoreference to a score

The musical output of this example, shown in Figure 27, involves the concatenation
of two elements: a chromatic scale and the autoreference to that same scale, which serves
as the argument of sHarmonicGrid. This function readjusts the pitches to fit the F penta-
tonic mode. Perhaps the most convenient aspect of iterative indexing of subgenotypes is
the simple facilitation, and even encouragement, of reusing previous elements within a
musical score. This is a ubiquitous circumstance in nearly any genre of music, hence this

118

Genotype functions
4.9. Internal autoreferences

architecture introduces a bias in the musical latent space toward results that encompass
this internal cohesion and linkage of materials. In any case, if one explicitly wishes to
avoid the use of self-references, it is merely a matter of deactivating their inclusion in the
list of eligible functions within the general library via the user interface.

Figure 27: Minimal example of autoreference

Autoreferences also allow for more concise writing. For instance, the genotype in
Listing 29 is equivalent to the following Listing 40:

1 vMotif(

2 lnWrap(lLogisticMap(p(0.5),p(0.1),p(0.9),q(100),pRnd())),

3 lmWrap(lAutoref(1)),laWrap(lAutoref(1)),liWrap(lAutoref(1)))

Listing 40: Equivalent genotype with autoreferences

4.9.4. Definition of autoref functions

For the implementation of autoreferences, the framework function deployed in Listing 41

is used, which operates as follows:

At line 2, subGenLength stores the number of available subgenotypes for its funcType.

If there are no subgenotypes to reference, the autoreference is replaced by the al-
ternative genotype alternDecGen, which is a random function of the corresponding
type. In this case, making a self-reference is impossible, but the automatic generation
of the genotype continues its course smoothly.

If creating the autoreference is possible, the argument subGenIndex is used to deter-
mine which subgenotype is chosen. If the given value exceeds the available expres-
sions, a modulo operator is applied at line 8 to scale it to a valid range.

Line 9 evaluates the chosen subgenotype, and the resulting subspecimen is stored in
evaluatedSubGen.

The index of the referenced subgenotype is converted in line 13 into a golden encoded
integer, with g2p, which enables about half a million possible references, much more
than ever possible needed.

119

Genotype functions
4.9. Internal autoreferences

Finally, the own subgenotype of the autoreference function is returned, where the
decGen key returns the function name in the form <funcID> + "autoref", provided by
the funcName argument. All subsequent keys related to the phenotype are extracted
from the subspecimen stored in evaluatedSubGen.

Note that, unlike the rest of the genotype functions, the returned subspecimen is not
passed to the function indexDecGens. The reason for this is to avoid autoreference
from being indexed as a subgenotype, which leads to an excessive iteration effect
due to the chain of autoreferences, often resulting in an overrepresentation of the
initially referenced branches. However, it has been the practical experience that has
led to the clear conclusion that the results are more balanced without such inclusion.
Nevertheless, the effects of allowing chained autoreferences can be easily verified by
introducing the Object from lines 12 to 20 into the function indexDecGens.

1 var autoref = (funcName, funcType, encodedFuncIndex, subGenIndex, alternDecGen) => {

2 var subGenLength = subGenotypes[funcType].length;

3 if (subGenLength == 0) {

4 var evaluatedSubGen = evalExpr(alternDecGen);

5 return evaluatedSubGen;

6 }

7 else {

8 subGenIndex = Math.abs(subGenIndex - 1) % subGenLength;

9 var evaluatedSubGen = evalExpr(subGenotypes[funcType][subGenIndex]);

10 }

11 return {

12 funcType: funcType,

13 encGen: flattenDeep([1, encodedFuncIndex, 0.57, g2p(subGenIndex + 1), 0]),

14 decGen: funcName + "(" + (subGenIndex + 1) + ")",

15 encPhen: evaluatedSubGen.encPhen,

16 phenLength: evaluatedSubGen.phenLength,

17 phenVoices: evaluatedSubGen.phenVoices,

18 harmony: evaluatedSubGen.harmony,

19 timegrid: evaluatedSubGen.timegrid,

20 analysis: evaluatedSubGen.analysis

21 };

22 };

Listing 41: Framework function autoref to create all autoreferences functions

120

Genotype functions
4.9. Internal autoreferences

The autoref function thus facilitates the creation of specific autoreference functions for
each type. Listing 42 shows the definition of some of these specific functions. Some of them
use the defaultEvent to build the alternative subgenotypes they will return in case an au-
toreference is not possible. This default event is constructed based on the number of extra
parameters of the active species. If, for example, eventExtraParameters = 2, the resulting
defaultEvent will be the string "e(nRnd(),mRnd(),aRnd(),iRnd(),pRnd(),pRnd())".

1 // autoreferences functions for each output type

2 indexGenotypeFunction("pAutoref", "paramF", 25, ["goldenintegerLeaf"]);

3 pAutoref = subgenotypeIndex => autoref("pAutoref", "paramF", g2p(25),

subgenotypeIndex, "pRnd()");

4 indexGenotypeFunction("lAutoref", "listF", 26, ["goldenintegerLeaf"]);

5 lAutoref = subgenotypeIndex => autoref("lAutoref", "listF", g2p(26),

subgenotypeIndex, "lRnd(pRnd(),qRnd())");

6 indexGenotypeFunction("eAutoref", "eventF", 27, ["goldenintegerLeaf"]);

7 eAutoref = subgenotypeIndex => autoref("eAutoref", "eventF", g2p(27),

subgenotypeIndex, defaultEvent);

8 indexGenotypeFunction("vAutoref", "voiceF", 28, ["goldenintegerLeaf"]);

9 vAutoref = subgenotypeIndex => autoref("vAutoref", "voiceF", g2p(28),

subgenotypeIndex, ("v(" + defaultEvent + ")"));

10 indexGenotypeFunction("sAutoref", "scoreF", 29, ["goldenintegerLeaf"]);

11 sAutoref = subgenotypeIndex => autoref("sAutoref", "scoreF", g2p(29),

subgenotypeIndex, "s(v(" + defaultEvent + "))");

Listing 42: Definition of some autoreference functions

4.9.5. Indexing tree and subgenotype calls

Let’s analyze a more complex genotype, with multiple autoreferences. Listing 43 de-
picts multiple autoreferences using arrows. Additionally, within comments on each line,
it is displayed the subgenotype number assigned to each branch in the global variable
subGenotypes. The label displacement indicates the indexing order: the more to the left,
the earlier it has been included in the array of subgenotypes of its type.

121

Genotype functions
4.9. Internal autoreferences

1 s2V(// s-1

2 vABCAB(// v-7

3 vRepeatV(// v-2

4 vConcatE(// v-1

5 e3Chord(// e-1

6 n(0.21853), // n-1

7 mRnd(), // m-1

8 m(49), // m-2

9 mAutoref(2),

10 aRnd(), // a-1

11 iRnd()), // i-1

12 e4Chord(// e-2

13 nRnd(), // n-2

14 m(69), // m-3

15 mAutoref(3),

16 m(90), // m-4

17 mAutoref(4),

18 aRnd(), // already indexed

19 iAutoref(1))),

20 q(12)), // q-1

21 vConcatV(// v-6

22 vAutoref(2),

23 vRepeatV(// v-5

24 vRepeatV(// v-4

25 vPerpetuumMobile(// v-3

26 nAutoref(2),

27 lm(54,75,27,53,78,67), // lm-1

28 laWrap(// la-1

29 lRemap(// l-2

30 l5P(// l-1

31 pRnd(), // p-1

32 pRnd(), // already indexed

33 pAutoref(1),

34 p(0.238), // p-2

35 pAutoref(2)),

36 pRnd(), // already indexed

37 pAutoref(1))),

38 liWrap(// li-1

39 lRnd(// l-3

40 pAutoref(2),

41 qAutoref(1)))),

42 q(6)), // q-2

43 qAutoref(2))),

44 vAutoref(3)),

45 vAutoref(5))

Listing 43: Visualization of autoreferences and indexing order

Listing 44 provides an abbreviated display of the subGenotypes content generated at
the end of the complete genotype evaluation, where you can verify the entry order of the
previous functional tree. Several observations are relevant to this process:

122

Genotype functions
4.9. Internal autoreferences

The indexing order goes from inside out and top to bottom, directly caused by the se-
quential evaluation of nodes in the functional tree. This is particularly evident when
comparing the label numbering of the indexing of voice nodes. This order explains
why the arrows revealing autoreferences always point upwards and, consequently,
always reuse previous musical material.

Multiple autoreferences may point to the same branch. Both lines 33 and 37 contain
the same self-reference as line 31.

The expressions in lines 18, 32, and 36 do not generate a new entry in the library since
they already exist. This filtering is also aimed at avoiding the overrepresentation of
subgenotypes.

1 {

2 scoreF : ['s2V(vABCAB(vRepeatV(...'], // s-1

3 voiceF : ['vConcatE(e3Chord(n(...', // v-1

4 'vRepeatV(vConcatE(e3Chord(...', // v-2

5 'vPerpetuumMobile(nAutoref(2)...', // v-3

6 'vRepeatV(vPerpetuumMobile(...', // v-4

7 'vRepeatV(vRepeatV(vPerpetuumMobile(...', // v-5

8 'vConcatV(vAutoref(2),vRepeatV(...', // v-6

9 'vABCAB(vRepeatV(vConcatE(e3Chord(...'], // v-7

10 eventF : ['e3Chord(n(0.21853),mRnd(),m(49),mAutoref(2)...', // e-1

11 'e4Chord(nRnd(),m(69),mAutoref(3)...'], // e-2

12 paramF : ['pRnd()', // p-1

13 'p(0.238)'], // p-2

14 listF : ['l5P(pRnd(),pRnd(),pAutoref(1),p(0.238),...', // l-1

15 'lRemap(l5P(pRnd(),pRnd(),pAutoref(1)...', // l-2

16 'lRnd(pAutoref(2),qAutoref(1))'], // l-3

17 notevalueF : ['n(0.21853)', // n-1

18 'nRnd()'], // n-2

19 lnotevalueF : [],

20 midipitchF : ['mRnd()', // m-1

21 'm(49)', // m-2

22 'm(69)', // m-3

23 'm(90)'], // m-4

24 lmidipitchF : ['lm(54,75,27,53,78,67)'], // lm-1

25 articulationF : ['aRnd()'], // a-1

26 larticulationF : ['laWrap(lRemap(l5P(...'], // la-1

27 intensityF : ['iRnd()'], // i-1

28 lintensityF : ['liWrap(lRnd(pAutoref(2),...'], // l1-1

123

Genotype functions
4.10. Genotype functions libraries

29 quantizedF : ['q(12)', // q-1

30 'q(6)'], // q-2

31 lquantizedF : [],

32 goldenintegerF : [],

33 lgoldenintegerF : [],

34 harmonyF : [],

35 timegridF : [],

36 recursiveF : []

37 }

Listing 44: Object subGenotypes created after evaluating a decoded genotype

4.10. Genotype functions libraries

4.10.1. Creation and updating of libraries

The genotype functions library is another main component of this model. It contains
a catalog with the characteristics of all available functions that can come into play for
the creation of specimens. The procedures for automatic genotype writing will access the
necessary data through this library.

During the initialization time of the core code, when each function is loaded, a call to the
function indexGenotypeFunction is made. This function, shown in Listing 45, progressively
includes in the Object allGenotypeFunctionsData the identifiers and the list of arguments
required by each function.

1 var indexGenotypeFunction = (funcName, funcType, funcIndex, parameters,

extraParametersType) => {

2 if (allGenotypeFunctionsData[funcType] == undefined)

allGenotypeFunctionsData[funcType] = {};

3 allGenotypeFunctionsData[funcType][funcName] = {

4 "functionIndex": funcIndex,

5 "functionType": funcType,

6 "arguments": parameters,

7 "extraArguments": extraParametersType

8 };

9 };

Listing 45: Function indexGenotypeFunction to create an all functions library

124

Genotype functions
4.10. Genotype functions libraries

Once all genotype functions data has been gathered, the genotypeFunctionsLibrary is
constructed as another Object within a global variable. Listing 46 shows how this data
structure is organized. All items are listed several times according to different sorting
criteria. Each classification will be necessary at some point in the generative processes of
functional tree composition.

From this complete library, the eligibleFunctionsLibrary is extracted. It is another
Object with a structure identical to genotypeFunctionsLibrary, but gathering only the
functions that can be chosen in the automatic genotype writing process. Additionally,
it adds the key eligibleFunctions with the list of integer indices of the current eligible
functions.

The eligible functions library is regenerated by createEligibleFunctionLibrary each
time the list of eligible functions changes from the user interface, or when rendering
a specimen containing this information as one of its initialConditions. If there is a
change in the species, altering the total of event extra parameters, both libraries must
be regenerated since the parameter lists of all those genotype functions that need to
incorporate additional arguments are also updated.

1 {

2 decodedIndices: { // functions sorted by integer decoded index

3 '0': 'p',

4 '1': 'l',

5 '2': 'e',

6 '3': 'v',

7 ...

8 },

9 encodedIndices: { // functions sorted by encoded index

10 '0': 'p',

11 '0.01005': 'hHexatonicScale',

12 '0.012703': 'rConstant',

13 '0.026311': 'l5P',

14 ...

15 },

16 'functionNames': { // functions sorted by name, with main data

17 a: {

18 encIndex: 0.562306,

19 intIndex: 9,

20 functionType: 'articulationF',

21 arguments: ['articulationLeaf']

22 },

125

Genotype functions
4.10. Genotype functions libraries

23 aAutoref: {

24 encIndex: 0.667551,

25 intIndex: 281,

26 functionType: 'articulationF',

27 arguments: ['goldenintegerLeaf']

28 },

29 ...

30 },

31 'functionLibrary': { // functions grouped by output types, with main data

32 paramF: {

33 p: { functionIndex: 6, functionType: 'paramF', arguments: [Array] },

34 pRnd: { functionIndex: 131, functionType: 'paramF', arguments: [Array] },

35 pGaussianRnd: { functionIndex: 132, functionType: 'paramF', arguments: [Array] },

36 pAutoref: { functionIndex: 25, functionType: 'paramF', arguments: [Array] },

37 ...

38 },

39 notevalueF: {

40 n: { functionIndex: 5, functionType: 'notevalueF', arguments: [Array] },

41 nRnd: { functionIndex: 310, functionType: 'notevalueF', arguments: [Array] },

42 nAutoref: { functionIndex: 277, functionType: 'notevalueF', arguments: [Array] },

43 ...

44 }

45 ...

46 }

47 }

Listing 46: Data structure of genotypeFunctionsLibrary data structure

The Table 7 provides further details about the constituents of the library of eligible
genotype functions, which is the data structure that will be extensively manipulated during
the rendering of specimens.

Key Description

eligibleFunctions Ordered list of function indices, assigned as integers at the
moment of their inclusion in the core code as unique
identifiers for each function. It’s an array of integers that
exactly matches the eligibleFunctions element, which is
part of the initial conditions that characterize a specimen.

decodedIndices Expands the previous numeric array by pairing each integer
with the name of the genotype function it points to.

126

Genotype functions
4.10. Genotype functions libraries

encodedIndices Ordered list of function indices converted to golden encoded
integers. This reordering is used when developing the
decision tree determined by a germinal vector. The use of
golden encoded integers is essential to achieve a balanced
distribution of these pointers in the range [0, 1], avoiding
overrepresentation of certain procedures over others.

functionNames Alphabetically ordered list of function names paired with
their encoded and decoded identifiers, along with the output
function type, and an array containing the function types for
each required argument.

functionLibrary List of functions similar to the previous one, but grouped by
output function type.

Table 7: Data structure of the eligibleFunctionsLibrary Object

4.10.2. Indexing functions with golden encoded integers

The two libraries must function coordinately. The handling of these structures has been
designed to meet these requirements:

The structure of the libraries should be consistent over time, while also being con-
figurable by the user.

The addition of new functions should not compromise repeatability in specimen
rendering. In other words, a genotype should always produce the same phenotype
upon rendering, regardless of whether the library has been expanded. This motivates
certain decisions in the design of the genotype indexing system, explained below.

To ensure that the process of automatic genotype writing is optimal in terms of
the variety of its outcomes, the encoded indices identifying each genotype function
should have a balanced distribution that avoids biases and underrepresentations of
certain functions in the latent musical space. This should be the case whether there
are just a few dozen functions or thousands of them, all within the range of [0, 1].

To reconcile these three elements, golden encoded integers are employed. The details
of this conversion are left for the following Section 5.1.4, where the encoding and decoding
of specimens are globally addressed.

127

Genotype functions
4.10. Genotype functions libraries

4.10.3. Influence of the palette of eligible functions on style

The set of procedures, beyond being a mere requirement for the construction of geno-
types, strongly conditions the latent musical space and can therefore be considered a
primary identifying characteristic of a particular style. Especially from the 20th century
onwards, certain aesthetic movements, composers, or even specific works can be linked to
one or several characteristic procedures. So much so that certain pieces in the repertoire
are primarily recognized for their introduction of specific techniques.

GenoMus allows for the precise configuration of which functions to activate from the
user interface. It is possible, to drive experimentation, and to narrow down this variety,
which can be useful in obtaining stylistically consistent results. In his well-known text
Poetics in Music, Stravinsky [147] considered self-limitation to certain restraints as an
essential element to stimulate creativity, akin to a game that requires clear rules to create
the necessary tension among its elements:

My freedom will be so much the greater and more meaningful the more narrowly
I limit my field of action and the more I surround myself with obstacles. Whatever
diminishes constraint diminishes strength. The more constraints one imposes, the more
one frees one’s self of the chains that shackle the spirit.

128

5
Encoding and decoding

“ I believe that music today could surpass itself by research into the
outside-time category, which has been atrophied and dominated by the
temporal category. Moreover, this method can unify the expression of fun-
damental structures of all Asian, African, and European music. It has a
considerable advantage: its mechanization—hence tests and models of all
sorts can be fed into computers, which will effect great progress in the
musical sciences.

Iannis Xenakis [158, p. 200]

We have reached the point where the core of the conceptual framework discussed in
Chapter 2, the encoding of these processes as one-dimensional vectors, will be put into
practice. The design of the grammar outlined up to this point aims to create an extremely
simple syntax in which all processes are expressed in a formally identical manner. The
only concession made has been the inclusion of certain specific types of parameters to
make them readable and manageable for humans.

This chapter delves into the details of encoding the elements that constitute a specimen.
Let’s remember that the fundamental data contained in a rendered specimen are the initial
conditions for its creation, the genotype (which is the program resulting from metapro-
gramming from simple numeric sequences), and the phenotype (the musical structure ge-
nerated by evaluating that program). The detailed structure of a specimen was previously
presented in Table 2.

129

Encoding and decoding
5.1. Genotype encoding

5.1. Genotype encoding

The encryption of the genotypes decoded as a sequence of numbers is achieved by
decomposing the functional expressions into combinations of these three components,
which in total involve five different kinds of tokens:

Function opening — (2 tokens) — It consists of the function name and the opening
parenthesis. A flag value 1, marking the beginning of this opening, and the function
index, identifying which function is being used.

Leaf — (2 tokens) — Numerical values at the end of each branch. Before the leaf value,
a leaf type identifier is required to employ the correct conversions in the decoding
process.

Function closing — (1 token) — The closing parenthesis. This element is necessary be-
cause the leaves can be a series of values (or no value at all), hence a flag 0 indicates
the closure of the function.

To represent different components of the functional tree as normalized values in the
range [0, 1] ∈ V, several strategies and conversions are employed, depending on the token
type and the handled numeric ranges. All these mappings have been designed to cover a
very wide spectrum of possible results, while also creating encodings with clear numerical
contrasts that allow any analysis algorithm to easily capture the differences between
vectors.

For this encoding to also work in reverse, from the numerical vector to the functional
expression, it is necessary to consider in detail how this translation works for each of
these tokens. Let’s remember that the encoded genotype has a dual function: it serves
as the abstract representation created from an executable alphanumeric expression, but
simultaneously, it must act as an initial element capable of regenerating the exact expres-
sion from which it has been derived. In other words, every encoded genotype must be a
valid germinal vector that produces the same decoded genotype as the original. This fact
enables the retrotranscription discussed in Section 5.6.

5.1.1. Leaf type identifiers

The identification of the next leaf type is needed to handle the right conversions since
a function is often fed with arguments of a different type. All leaf types are tagged with
numbers ≥ 0.5 for a reason: this number, besides being an identifier, is also used after the

130

Encoding and decoding
5.1. Genotype encoding

retrotranscription as a threshold value to decide whether a new value should be added to
the list of parameters. Since the threshold imposed by germinal condition maxl is always
≤ 0.5, this ensures that all values in the list are correctly encoded until a flag value 0 closes
the list and ends the function.

5.1.2. Leaf values

In the encoding of the leaf values of a functional tree, all the conversions explained in
Section 3.5 come into play. In the case of generic parameters, no conversion is necessary
(beyond correcting values outside the range or rounding floats with more than six digits
of mantissa).

5.1.3. Function opening and closing flags

The encoded genotypes simply use 1 and 0 to indicate the opening and closing of a
subgenotype. When writing an expression from any unidimensional vector, the original
values from the germinal vector are simply ignored and overwritten. The choice of extreme
values within the normalized range is aimed at creating well-differentiated numerical
structures that can be recognized by any statistical machine-learning process. In the case
of closing a substructure (which represents a closing parenthesis), it is required that this
number be < 0.5, as we have just seen above, to indicate that no further argument is added
to the open subexpression at that moment.

5.1.4. Genotype function indices

Encoded genotypes must refer unequivocally to the available functions ∈ E f unc con-
tained in any functional tree. So, as a first requirement, any genotype function must be
pointed by a unique index ∈ V. Once indexed, a function keeps its index unchanged, to
ensure that an encoded genotype will always be decoded as the same functional expres-
sion, regardless of changes in set Funcs after adding new functions to the library. At the
same time, these indices must be as separated and uniformly distributed as possible in
the interval [0, 1] to obtain distinct vectors that are easily distinguishable for machine
learning algorithms. Finally, integer indices must be assigned to each new genotype func-
tion without knowing how many new ones will be added in the future.

The functional structure of a genotype is primarily defined by the processes it en-
compasses, hence the numerical identification plays an extremely important role in this

131

Encoding and decoding
5.2. Minimal examples

abstract representation. The statistical measurability of the diversity among these struc-
tures significantly determines the expressive power of the entire encoding system.

To meet these conditions, these identifying indices are golden encoded integers, con-
verted from their integer identifier using the special type of conversion explained in Sec-
tion 3.5.9.

Once this bijection is defined, each new genotype function is assigned an integer index
converted to its reciprocal encoded golden value. The transformation tran then takes each
number in a germinal vector that represents a call for a genotype function and substitutes
it with the closest available index of the output type required by its parent function, as
illustrated in Figure 28.

g
ol
d
en
(2
)

g
ol
d
en
(4
)

g
ol
d
en
(1
)

g
ol
d
en
(3
)

0.5

g
ol
d
en
(5
)

g
ol
d
en
(6
)

Figure 28: Selection of genotype functions with golden encoded integers. For this example, let’s assume that
only genotype functions with the decoded indices n = 1, 2, 3, ..., 6 are eligible for a given output
type. Consequently, the value provided by the germinal vector is substituted by its closest num-
ber among the available golden values golden(n) and 0.372 is replaced by golden(4) = 0.472136,
a permanent pointer to a function. This transformation ensures the rendering of the very same
specimen, regardless of working with an extended function library in the future, since this iden-
tifier will remain always the same. To check these values from the JavaScript console, it can be
employed the converters g2p and its inverse p2g. Thus, the expression g2p(4) will return the
corresponding encoded index.

An important detail is that integer index assignments to functions start from 1. Func-
tion index zero is avoided because golden(0) = 0, which would make its encoded value
coincide with the function closing flag value. Although this situation is distinguishable
within the context, I have preferred to avoid it to facilitate statistical analysis of the en-
coded patterns.

5.2. Minimal examples

The Figure 29 displays several examples of deconstruction and encoding of minimal
genotypes, given a valid functional expression as input. In turn, Table 8 compiles the
conversions of different tokens to normalized values.

132

Encoding and decoding
5.3. Visualization of unidimensional vectors

Figure 29: Decomposition and encoding of minimal genotypes. These three expressions demonstrate how
different cases of leaves are handled: functions without arguments (voidLeaf), only one value, or
a list of values.

5.3. Visualization of unidimensional vectors

To work with the lengthy numerical sequences that can be generated, especially during
the addition of new functions and debugging, we can visualize these vectors in a sort of
barcode. The table also shows the colors used for visualization. Table 8 also demonstrates
how different color tones are assigned to various values to ease the readability of these
numerical structures.56 Figure 33 shows an example of an encoded and visualized geno-
type.

56Visualizing genetic code sequences is a discipline in itself with multiple approaches [112]. I draw inspiration,
in a very loose manner, from some of these ways of visualizing intricate structures to gain insight into how
functional trees are being translated and flattened into one-dimensional sequences.

133

Encoding and decoding
5.3. Visualization of unidimensional vectors

Genotype element Token Encoding Color code

function opening new function flag 1

function index golden integer

leaf leaf type identifier values > 0.5

leaf value converted value

function closing closing parenthesis 0

Table 8: Numerical encoding of functional expression tokens. For visualizing the resulting numerical vectors,
each type of token is represented by a color scheme: black to denote the beginning and end of
subgenotypes, warm colors for references to function indices, cool colors for leaf values, and gray for
leaf type identifiers.

The conventions defined for this visualization are as follows:

The length of each bar indicates the value within the range [0, 1].

Black indicates the opening or closing of a subgenotype.

Reddish tones are reserved for values corresponding to a golden encoded integer
used in the function library.

Various shades of gray indicate a leaf type identifier, aiding in identifying how many
leaves there are and where they are located.

The range of cool colors from green to violet is used for the rest of the values (always
leaf values).

A leaf value may be one of the key values mapped to black, reddish, or gray tones.
For simplicity, no distinction is made in this case. These cases are easily detectable
from context.

To visualize very similar values, the colors in each range vary widely even with small
increments. Figure 31 shows the treatment for the closest values within a range.

134

Encoding and decoding
5.3. Visualization of unidimensional vectors

Figure 30: Genotype and its annotated visualization. Recognizable patterns can be observed in the graphical
representations of the encoded genotypes, also marked on the decoded genotype above:
1. Function openings.
2. Subgenotypes of functions without leaf.
3. Several consecutive function closings.
4. List leaf type.
5. Subgenotypes with a single leaf.
6. Leaf value appearing in gray due to having an encoded value matching the leaf type identifier.
7. Similar to the beginning, a sequence of functions indicates a nested structure.
8. Self-references, identifiable by the red-colored leaf (such as the one marked with 9), indicating
the use of a golden encoded integer to reference another subgenotype.

135

Encoding and decoding
5.3. Visualization of unidimensional vectors

Figure 31: Color assignment for leaf values between 0.4 and 0.4001 are visualized in minimal increments of
0.000001. This aims to ensure that even the smallest possible difference between values receives
highly contrasting colors. Although it may seem that there is a repeated pattern, the hue values of
the color change slightly in each cycle to cover the entire possible color palette.

To better apprehend the numerical structures resulting from the encoding, Figure 30

displays a decoded genotype alongside its encoding visualization. Various recurring fea-
tures are highlighted in the functional expression and the barcode representation.

The colorization aids in recognizing these patterns for the human eye, but it’s important
not to forget that for statistical analysis in any machine learning system, an appropriate
graphical representation would eliminate color and would resemble that of Figure 32.

Figure 32: Monochromatic visualization of an encoded genotype

The Figure 33 is an additional example of encoding and visualizing a genotype. In
this case, each line of code is matched with its numerical representation to provide more
clarity in the translation of these substructures.

136

Encoding and decoding
5.3. Visualization of unidimensional vectors

Figure 33: Compared listings of encoded and decoded versions of the same genotype. Paired by rows, the
elements composing a functional tree and their purely numerical encoding. To enhance readability,
the maximal decomposition into individual elements has been avoided, instead, certain blocks have
been kept grouped with their parentheses, resembling the presentation in the user interface.

137

Encoding and decoding
5.5. Germinal vector and genotype decoding

5.4. Germinal vector and genotype decoding

Now let’s consider the reverse process: the conversion of a numerical sequence into
a valid functional expression. It is important to recall that I refer to any sequence of
numbers ∈ [0, 1], of any length, as a germinal vector57. This sequence serves as the main
initial condition and is used as a decision tree for generating a decoded genotype. This
transformation must fulfill several requirements:

Initially, a germinal vector is universally computable: any germinal vector of any length
is valid as input and will ultimately result in a valid expression. However, a con-
version process may be interrupted if the output exceeds certain length constraints
imposed.

To prevent infinite loops, additional constraints are imposed as complementary initial
conditions: the maximum depth level and the maximum length of lists. A detailed
analysis of the initial conditions set is provided in Section 5.6.

The conversion process is deterministic: the same germinal vector, accompanied by the
same complementary initial conditions, always produces the same specimen as a result.
All random subprocesses, therefore, have a seed, either global or local.

Given a germinal vector, during the specimen rendering process, this sequence will
result in an encoded genotype and its decoded counterpart. Figure 34 illustrates the
translation from an encoded genotype to the functional expression and demonstrates the
step-by-step operation on the numerical sequence of the germinal vector to transform
it into a decoded genotype following the conventions specified in Table 8. This is the
key process that enables the postulated retrotranscription discussed in Section 2.5 of the
conceptual framework.

5.5. Initial conditions for specimen rendering

To reach the functional expression from the germinal vector, it’s essential to determine
certain complementary conditions, which I previously discussed theoretically in Section 2.4
and are now translating into practical implementation. These conditions are summarized
in Table 9, where it can be verified that the first six keys determine the handling of the
germinal vector according to three purposes:

57I adopt this term as yet another nod to the biological metaphor. In genetics, germinal line, most often germline,
refers to the population of organisms that produces a new generation, such as the ovum or the sperm.

138

Encoding and decoding
5.5. Initial conditions for specimen rendering

eventExtraParameters and specimenType respectively define the species and the out-
put type, and are the most defining conditioners since, in general, specimens of
different species and output types cannot interact in evolutionary processes.

depthThreshold and maxListCardinality limit excessive growth and the appearance
of infinite loops.

localEligibleFunctions and seed ensure the repeatability of the generative process,
regardless of whether more functions are added to the available procedures library.

1start [0, 1] [0.5, 1) [0, 1] 0

new function
flag

function
encoded index

leaf
identifier

leaf
value

function end
flag

germinal value
ignored

approximated from
germinal value

germinal value
ignored, but for lists it

determines if a new item
will be added

germinal value
unchanged

germinal value
ignored

if a leaf is
added

if current
function is
completed if parent

function is
completed

if current function is completed and a new
function must be added in the parent level

if leaf is part of a list and
a new item is added

if current function has no leaves

if a new function is added
inside a parent function

Figure 34: Numerical transformations applied by the map trans to create encoded genotypes from germinal
vectors. Black and gray values work as flags and identifiers that replace the original numbers of
a germinal vector. Orange indicates that a golden value conversion is needed to create an exact
reference to a genotype function. Values in cyan nodes are not changed, since they correspond to
leaf parameters fed as numeric arguments to terminal functions.

139

Encoding and decoding
5.5. Initial conditions for specimen rendering

Key Description Example

eventExtraParameters Number of additional generic
parameters, besides the
mandatory ones (notevalue,
midipitch, articulation and
intensity). This feature
defines the genotype species.

3

specimenType Output type of the core
genotype function at the base
of the functional tree.

"scoreF"

localEligibleFunctions Set of indices of genotype
functions eligible for building
the functional expression.

[0, 1, 2, 3, 4, 5, 7, 9, 10,

11, 12, 14, 15, 17, 19, 20,

21, 22, 25, 26, 27, 28]

depthThreshold The depth limit from which,
in constructing the functional
tree, only identity functions
will be used, thereby limiting
potential excessive genotype
growth.

9

maxListCardinality Maximum number of items
that a list-type leaf can
contain.

15

seed Global seed value that will
make repeatable the outcome
of genotype processes
involving pseudorandom
numbers.

712114190846465

germinalVector The sequence that will be
used as a decision tree for the
construction of a genotype,
based on all previous initial
conditions.

[0.473092, 0.82544, 0.00228,

0.146925, 0.39915, 0.426203,

0.028851, 0.596555, 0.905445,

0.690755, 0.267705, 0.752557,

0.209328, 0.9131, 0.660553]

Table 9: Description and examples of initialConditions for specimen generation

140

Encoding and decoding
5.5. Initial conditions for specimen rendering

Figure 35: Germinal vector and conversion to encoded and decoded genotype in parallel. The influence
of initialConditions has been highlighted in the code: 1. The function lLogisticMap has
reached the predefined depthThreshold = 4, hence in the subsequent level, there are only iden-
tity functions. 2. Under the initial conditions eventExtraParameters = 2, the functions l and
lFibonacci cover that requirement. 3. Another constraint is the maximum length of the lists.
For this example, maxListCardinality = 3.

141

Encoding and decoding
5.5. Initial conditions for specimen rendering

In the preceding Figure 35, the values of the germinal vector and their transformation
into code following the prior automaton are depicted line by line. Additionally, the impli-
cations of the initial conditions on the metaprogramming of the functional expression are
highlighted. The germinal vector in this example is extremely short, consisting of merely
eleven values. During the construction of the encoded genotype, the values of the germinal
vector are looped repetitively until the expression successfully closes in accordance with
the constraints imposed by the initial conditions.

The process of numerical transformation becomes significantly clearer through the
graphical representation of both vectors. Figure 36 illustrates the same process as the pre-
vious figure but also demonstrates the correspondences between values, elucidating which
values are overwritten, which remain unchanged, and which undergo some adjustment.

Figure 36: Comparative visualization of a germinal vector and its corresponding encoded genotype. The
germinal vector (framed in black) contains only eleven values. Until the genotype is completed,
this sequence repeats itself. Once the function tree is completed, no more values from the germinal
vector are taken, and it is truncated at that point. The lines connecting both vectors illustrate
these situations:
1. Solid blue lines mark leaf values that are copied without changes, displaying identical values
(maintaining their color).
2. Dashed blue lines represent leaf values with adjustments (due to the quantization of certain
specific parameters), hence the lengths of the lines remain the same, but there is a color change
indicating slight modifications in the genotype values.
3. Red dashed lines indicate values used for the selection of a genotype function (hence their
reddish tone) and have been adjusted following the process described in Section 5.1.4. It can be
observed that although the tendency is for the final value to be similar to that of the germinal
vector (similar length), in this case, the eligible functions in each class have been greatly reduced.
Consequently, sometimes the length of the bar is quite different, even though it represents the best
possible approximation to the available values.
4. Values not connected indicate their lack of relevance, as they are replaced by flags or
corresponding identifiers.

142

Encoding and decoding
5.6. Retrotranscription of genotypes as germinal vectors

It is easy to distinguish a germinal vector from its transformation into an encoded geno-
type due to the notable absence of colors associated with key values such as identifiers or
golden encoded indices. Considering that roughly half of the values in the germinal vector
are overwritten, the search space when applying machine learning algorithms becomes
much smaller than it initially appears.

As we will observe through several musical examples in Section 7.1.2, experimenting
with very short germinal vectors and mutations upon them enables the attainment of
unexpected results.

Figure 37: Equivalent germinal vectors to obtain the same genotype. As the red and blue arrows show, in
this example, only two important values are determining the chosen function m and the parameter
value 60. The retrotranscription of the encoded genotype vector is indicated by the blue arrow: the
generated vector can be returned to the pool of its corresponding germinal vectors, as long as this
vector generates itself. Colors help to easily identify retrotranscribed germinal vectors.

5.6. Retrotranscription of genotypes as germinal vectors

Figure 37 compares several equivalent germinal vectors corresponding to the encoded
genotype of the minimal specimen generated with m(60), seen in Figure 4, whose encGen

key is [1, 0.326238, 0.53, 0.430607, 0]. This vector can be included back in the pool
of germinal vectors because it is self-generating. That is exactly the desired feature called
retrotranscription working as described in Section 2.5.

143

Encoding and decoding
5.7. Phenotype encoding

In GenoMus, the retrotranscription is an efficient method to find a germinal vector
from a functional expression created or edited by hand. In other words, it enables a crucial
process for the entire model to make sense: it allows for a kind of reverse engineering
where, from any program, it obtains the decision tree that the metaprogramming process
must follow to arrive at that specific program. The key point that should be emphasized is
that every encoded genotype is simultaneously an encoded representation of the executable program
and the germinal vector that generates that same program.58

[0, 1]start [0, 1] [0, 1] [0, 1] [0, 1] [0, 1] ... [0, 1]

enc. number
of voices

enc. number
of events

encoded
delta time

enc. number of
multiparameter

items

multiparam.
enc. item

encoded
parameter

last encoded
parameter

else

if items in multiparameter
are incompleted

if there are events in voice left to complete

if there are voices in score left to complete

Figure 38: Automated rule set for encoding phenotypes into one-dimensional vectors. As in Figure 34, orange
indicates golden encoded integers, used to indicate the total number of voices, total events within
a voice, and total items within an event multiparameter.

5.7. Phenotype encoding

The evaluation of a decoded genotype results in a coded phenotype that, as seen in
Listing 8, is included in each generated subspecimen under the key encPhen. The phe-
notype includes the musical score generated following a format similar to that used for
the genotype encoding: both are one-dimensional vectors with values ∈ [0, 1]. This iso-
morphism between genotypes and phenotypes is a key characteristic of the model, as it
enables experimentation with various machine learning paradigms that manipulate input
and output data structured as sequences.

58It is noteworthy that this transformation also exists in genomics through the reverse transcriptase enzyme,
which transcribes DNA from RNA, reversing the usual flow of genetic information.

144

Encoding and decoding
5.7. Phenotype encoding

Figure 38 illustrates, in the form of an automaton, the steps involved in this encoding,
both to write these vectors and to decode them, converting them into the final output that
can be translated into readable musical notation. It is important to note that the structure
of the scores is simplified and reduced to specifying the number of voices, the number of
events in each voice, and listing the parameters of each event. In Figures 12 and 13, it has
been already shown this internal articulation of the scores.

In the encoding of phenotypes, golden encoded integers also play a significant role
as they encode the number of voices, the number of events, and the number of items in
multi-parameters such as midipitch.59

Given that the evaluation of each branch of a genotype yields a subspecies with its
phenotype encoded in the key encPhen, the parent functions operate on these phenotypes
to produce their own. In Listing 47, we observe part of the implementation of the function
vConcatV, which concatenates two voices sequentially. It can be seen in lines 9-11 how it
creates its encPhen property based on those inherited from its arguments. The g2p function
encodes the total number of resulting events from the merge of voices as a golden encoded
integer.

1 indexGenotypeFunction("vConcatV", "voiceF", 43, ["voiceF", "voiceF"]);

2 vConcatV = (v1, v2) => {

3 var encodedFuncID = g2p(43);

4 var totalEvents = v1.phenLength + v2.phenLength;

5 return indexDecGens({

6 funcType: "voiceF",

7 encGen: flattenDeep([1, encodedFuncID, v1.encGen, v2.encGen, 0]),

8 decGen: "vConcatV(" + v1.decGen + "," + v2.decGen + ")",

9 encPhen: [g2p(totalEvents)]

10 .concat((v1.encPhen).slice(1))

11 .concat((v2.encPhen).slice(1)),

12 phenLength: totalEvents,

13 phenVoices: 1,

14 // more metadata

15 })

16 };

Listing 47: Implementation of vConcatV

59In this GenoMus version, I only utilize one type of multiparameter, applied to the pitch to ease chord
handling. There is no restriction preventing the addition of further types of multiparameters if necessary,
thereby creating new specific parameter types.

145

Encoding and decoding
5.8. Phenotype decoding

The following demonstrates the process starting from a decoded genotype. From the
functional expression in Listing 48, a score with three voices is rendered. Note that the
events in this example have an extra parameter, utilizing the function type p for generic
parameters.

1 sAddV(

2 sConcatS(

3 s(

4 v(

5 e(

6 nRnd(), mRnd(), aRnd(), iRnd(), pRnd()))),

7 s2V(

8 vAutoref(1),

9 vAutoref(1))),

10 vConcatE(

11 e5Chord(

12 nRnd(), m(54), mRnd(), mAutoref(2), mRnd(), mAutoref(1), aRnd(), iRnd(), p(0.6907)),

13 e3Chord(

14 nAutoref(1), m(63), mRnd(), mAutoref(3), aAutoref(1), iRnd(), p(0.515688))))

Listing 48: Simple decoded genotype using events with one extra parameter

The phenotype resulting from the evaluation of this expression will thus be the key
encPhen which outputs the function of the main stem sAddV.

5.8. Phenotype decoding

Unlike genotypes, which can stem from their encoded version (exploring any numerical
expression) and from the decoded version (writing or manually editing as in any other
programming language), the decoding of the phenotype only occurs at the end of the
evaluation process. This is a subprocess within the rendering of specimens.

The output subspecimen of any functional tree contains only the encoded phenotype
in the numerical format just seen above. First, translation is performed into a readable
structure —the decoded phenotype—, and from this data, conversions are applied to some
form of graphical notation, audio synthesis, MIDI usage, or transformation into any other
sequential format or real-time interaction.

146

Encoding and decoding
5.8. Phenotype decoding

Figure 39: Germinal vector, encoded genotype, and corresponding encoded phenotype. Visualization of the
vectors related to the previous Listing 48. In this case, the germinal vector is longer than the
encoded genotype, so it is truncated without the need for loops. The correspondences between
values are marked similarly to the previous figure, although there is a new element: the orange
dotted lines indicate the leaf values of autoreference functions, which also turn red when using
golden encoded integers. The encoded phenotypes are also structured by golden integers, as can
be observed in the visualization.

Let’s continue with the same example as in the previous figures to illustrate how this
decoding is internally organized. In the rendering of the specimen, both versions of the
phenotype are included. Listing 49 displays an excerpt of the complete specimen where
the two corresponding keys, encodedPhenotype and decodedPhenotype, are gathered.

147

Encoding and decoding
5.8. Phenotype decoding

"encodedPhenotype" : [0.854102, 0.236068, 0.490318, 0.618034, 0.515814, 0.583115, 0.708952,

0.993757, 0.551135, 0.618034, 0.698402, 0.80451, 0.724587, 0.564028, 0.236068, 0.490319,

0.618034, 0.95, 0.612134, 0, 0, 0.576042, 0.618034, 0.948476, 0.508954, 0.744982, 0,

0.236068, 0.339352, 0.09017, 0.318825, 0.234693, 0.318825, 0.570247, 0.146883, 0.982682,

0.89011, 0.6907, 0.692587, 0.854102, 0.490026, 0.169299, 0.490026, 0.040777, 0.215134,

0.515688],

"decodedPhenotype" : {

"metadata" : {

"totalVoices" : 3,

"effectiveVoices" : 3,

"totalEvents" : 6,

"effectiveEvents" : 5,

"eventsPerVoice" : [2, 2, 2],

"effectiveEventsPerVoice" : [2, 1, 2],

"durationsPerVoice" : [785.985, 487.516, 2641.904],

"rhythmicDurationsPerVoice" : [536.278, 560.7, 624.35],

"scoreDuration" : 2641.904,

"rhythmicScoreDuration" : 624.35,

"generalOnsetTime" : 0

},

"score" : {

"voice-1" : {

"event-1-1" : {

"onset" : 0,

"pitches" : [64],

"duration" : 223.1092,

"intensity" : 58.77,

"param-5" : 0.993757

},

"event-1-2" : {

"onset" : 242.51,

"pitches" : [74],

"duration" : 543.4745,

"intensity" : 59.52,

"param-5" : 0.564028

}

},

"voice-2" : {

"event-2-2" : {

"onset" : 242.51,

"pitches" : [99],

"duration" : 245.0063,

"intensity" : 60.55

}

},

"voice-3" : {

148

Encoding and decoding
5.8. Phenotype decoding

"event-3-1" : {

"onset" : 0,

"pitches" : [42, 49, 54, 67],

"duration" : 2641.9041,

"intensity" : 70.4,

"param-5" : 0.690759

},

"event-3-2" : {

"onset" : 147.51,

"pitches" : [44, 63],

"duration" : 38.1472,

"intensity" : 37.28,

"param-5" : 0.515688

}

}

}

}

Listing 49: Data structure of a phenotype within a specimen

To cross-reference this data with the resulting music, the following Figure 40 illustrates
the conversion into musical notation.

Figure 40: Score corresponding to the decodedPhenotype in Listing 49. The specimen’s species includes
one extra parameter, which is reflected as a numerical value alongside each note. In this example,
the rhythmEnd and soundEnd points are also indicated, corresponding to the internal durations
within the musical metric structure and the effective sound duration associated with articulation.

149

Encoding and decoding
5.8. Phenotype decoding

The decodedPhenotype consists of an initial block of metadata, followed by the actual
score. Several important points should be noted during this conversion, as seen in the
example:

The metadata is quite self-explanatory, but it’s essential to remember the distinction
between rhythmic duration and sound duration of an event, which translates into
the voice and complete score levels. These durations, often different, are decisive in
the processes of joining voices and the score, as previously seen in Listing 17.

While processing the decoded phenotype with the decodePhenotype function, events
that do not produce sound are deleted. In the score data and subsequent musical
notation, it can be observed that the second voice starts with event 2-2, as for the first
one, the intensity parameter is zero, as seen in the visualization in Figure 39.

Similarly, in cases where an event has multiple pitches, note repetitions are removed
and reordered from low to high. For example, even though the e5Chord and e3Chord

function generate chords with five and three pitches respectively, the resulting events
3-1 and 3-2 have one pitch less due to some repetition that occurred (as can be easily
verified in the vector visualization).

150

6
Specimens generation

“ Computer programming is tremendous fun. Like music, it is a skill
that derives from an unknown blend of innate talent and constant practice.
Like drawing, it can be shaped to a variety of ends —commercial, artistic,
and pure entertainment. Programmers have a well-deserved reputation for
working long hours but are rarely credited with being driven by creative
fevers. Programmers talk about software development on weekends, vaca-
tions, and over meals not because they lack imagination, but because their
imagination reveals worlds that others cannot see.

Larry O’Brien and Bruce Eckel [51]

After explaining the representation system employed by the model, I proceed to de-
tail how operations are conducted with these abstractions. Several methods have been
provided in parallel for the creation and manipulation of specimens. I will explain the
essential design details to ensure the repeatability of results, the practical effectiveness of
a generative process within a potentially vast search space with many unpredictable inter-
actions, as well as the protections implemented to avoid security issues in the evaluation
of programs written or edited by hand.

The second part of the chapter focuses on the next level of complexity: that which
pertains to the production of populations of specimens, available processes for super-
vised and unsupervised candidate evaluation and selection, and the procedures used for
generating new populations through the evolution of previous generations. This system
draws inspiration from classical evolutionary algorithms but includes several peculiarities
in the segmentation of the subprocesses that constitute each new series of modifications
from a given population.

151

Specimens generation
6.1. Metaprogramming of genotypes

6.1. Metaprogramming of genotypes

6.1.1. Summary of the subprocesses

From the core process of the entire model, involving metaprogramming of computable
expressions from initial conditions, to their transformation into an interactive score within
the Max user interface, a significant number of intermediate subroutines are required.
There are various methods for creating and transforming a specimen. Before delving into
details, Table 10 provides an overview of the subprocesses that take place, aiding in better
orientation across the following pages.

Aux function name Description

Core functions

createGenotype Creates a deterministic genotype from initial conditions.

createSpecimen Creates a brand new specimen.

renderSpecimen Renders a specimen from minimal initial conditions and
playback options stored as an Object.

renderInitialConditions Creates specimen from current initial conditions.

specimenFromGerminalVector Renders a specimen from a germinal vector.

regenerateEligibleFunctions Rewrites the complete eligible genotype functions library
after a change in eventExtraParameters.

specimenDataStructure Formats specimen data structure as a JSON file
exportable Object.

specimenMinimalData Reduces a specimen data structure to the minimum
needed to reconstruct the specimen.

Genotype auxiliary handling

encodeGenotype Genotypes encoder.

decodeGenotype Genotypes decoder.

formatDecGen Expands and indents a compressed expression in a
human-readable format.

evalDecGen Encodes and decodes a genotype to filter invalid or
dangerous expressions before being evaluated.

152

Specimens generation
6.1. Metaprogramming of genotypes

extractLeaves Extracts leaves from an encoded genotype as an array.

mutateSpecimenLeaves Mutates only leaves of a specimen according to certain
probabilities.

replaceSpecimenBranch Replaces a branch of a given output type in a specimen,
with a brand new generated branch, and returns only
the new decodedGenotype.

UI Communication

saveSpecimenAndUpdateUI Synchronizes the information of the latest elements
generated by the core code with the user interface.

wrapEncodedPhenotype Wraps encoded phenotypes into a scoreF function
before processing phenotypes to enable working with
simple genotypes of any output type.

formatDecGen Expands and indents a compressed expression in a
human-readable format.

setPlaybackRate Playback rate adjustment, which rewrites the score
according to this tempo factor.

setEqualStepsPerOctave Rewrites pitches according to a division of the octave in
equal tempered parts.

setQuantization Rewrites notevalues of events according to a quantized
time grid defined by a minimal duration.

newRandomSpecimen Creates a new random specimen from scratch, trying to
satisfy a set of given constraints.

mutateLeaves Mutates only leaves values, according to specified
probability and maximal amount of change.

text Creates specimen by direct text input in Max patch.

encGenAsGerminal Rewrites current specimen to get a retrotranscribed
germinal vector. Germinal vector and decoded genotype
are identical after this operation.

replaceBranch Removes a branch from the decoded genotype and
replaces it with a brand new branch of the same function
type.

growHorizontally Concatenates new randomly generated music to the
current specimen.

growVertically Adds new randomly generated voices to the current
specimen.

153

Specimens generation
6.1. Metaprogramming of genotypes

setRating Stores last rating given by the user.

symbol Adds user comments incrementally.

deleteComments Deletes all user comments.

decodedPhenotype2bachRoll Converts decoded phenotype into a bach roll compatible
format to print and play the generated music.

Table 10: Functions related to creation and modification of specimens. The functions are grouped into
categories: core functions perform fundamental operations for genotype synthesis, creation, and
manipulation of the main data structures of the specimens. Under genotype auxiliary handling,
some functions carry out very specific processes on genotypes. UI Communication gathers func-
tions that are called from the Max interface or are necessary for proper interaction with it.

6.1.2. The core metaprogramming subroutine

The core function of GenoMus is createGenotype, which generates a deterministic
genotype from initial conditions. This function represents the actual implementation of
the mapping tran as described in the conceptual framework in Section 2.5. Due to the im-
portance of details for result repeatability, I reproduce the complete function in Listing 50.
Besides the comments, the code is fairly self-explanatory.

1 var createGenotype = (

2 extraParameters,

3 specimenType,

4 localEligibleFunctions,

5 genotypeDepthThreshold,

6 listsMaxNumItems,

7 seedForAlea,

8 germinalVector

9) => {

10 var newGenotypeStartTime = new Date();

11 validGenotype = true;

12 initSubgenotypes();

13 // main variable

14 var newGenotype;

15 // regenerates functions library only if set of eligible functions changes

16 if (arrayEquals(localEligibleFunctions, eligibleFunctions) == false) {

17 eligibleFunctionsLibrary = createEligibleFunctionLibrary(

18 genotypeFunctionsLibrary, localEligibleFunctions);

19 createGenFuncOrderedEncIndices();

20 };

21 eligibleFunctions = [...localEligibleFunctions];

154

Specimens generation
6.1. Metaprogramming of genotypes

22 // if eventExtraParameters has changed eligible functions are regenerated

23 if (eventExtraParameters != extraParameters) {

24 eventExtraParameters = extraParameters;

25 regenerateEligibleFunctions();

26 };

27 // update global initial conditions

28 mainFunctionType = specimenType;

29 defaultDepthThreshold = genotypeDepthThreshold;

30 defaultListsMaxCardinality = listsMaxNumItems;

31 globalSeed = seedForAlea;

32 currentGerminalVector = [...germinalVector];

33 // aux variables

34 var germinalVectorLength = germinalVector.length;

35 var germinalVectorReadingPos = 0;

36 var preEncGen = []; // rewriting of germinal vector as a retrotranscribable enc. genotype

37 var newDecodedGenotype = "";

38 var genotypeDepth = 0;

39 var notFilledParameters = []; // number of parameters to fill per depth level

40 // functions types in process of fulfulling their arguments

41 var expectedFunctions = [specimenType]; // starting with the output type function

42 var chosenFunction, chosenEncIndex;

43 var openFunctionTypes = [];

44 var nextFunctionType = specimenType;

45 var valueForChoosingNewFunction, chosenFunctionInfo;

46 var newLeaf, preItemValue, listItem, newItemThreshold, conversionFunc, typeIdentifier;

47 // the writing of the encoded and encoded genotype starts here

48 do {

49 // adds a function

50 if (leafTypes.includes(nextFunctionType) == false) {

51 germinalVectorReadingPos++;

52 preEncGen.push(1); // replace germinal value with new function identifier

53 // chooses a new function

54 // if depth threshold is reached, the current funcType identity func. is chosen

55 if (notFilledParameters.length >= genotypeDepthThreshold) {

56 chosenFunction = Object.keys(

57 eligibleFunctionsLibrary.functionLibrary[nextFunctionType])[0];

58 chosenEncIndex = eligibleFunctionsLibrary.

59 functionNames[chosenFunction].encIndex;

60 germinalVectorReadingPos++;

61 }

62 else {

63 valueForChoosingNewFunction = germinalVector[

64 germinalVectorReadingPos % germinalVectorLength];

65 germinalVectorReadingPos++;

66 chosenEncIndex = findEligibleFunctionEncIndex(

67 orderedElegibleEncIndices[nextFunctionType], valueForChoosingNewFunction);

155

Specimens generation
6.1. Metaprogramming of genotypes

68 chosenFunction = eligibleFunctionsLibrary.encodedIndices[chosenEncIndex];

69 }

70 preEncGen.push(chosenEncIndex);

71 newDecodedGenotype += chosenFunction + "(";

72 // reads the expected parameters of the chosen function

73 openFunctionTypes[openFunctionTypes.length] = nextFunctionType;

74 notFilledParameters[notFilledParameters.length] = Object.keys(

75 eligibleFunctionsLibrary.

76 functionLibrary[nextFunctionType][chosenFunction].arguments).length;

77 expectedFunctions[notFilledParameters.length - 1] = chosenFunction;

78 if (notFilledParameters.length > genotypeDepth)

79 genotypeDepth = notFilledParameters.length;

80 }

81 // adds a leaf

82 else {

83 if (nextFunctionType != "voidLeaf") {

84 germinalVectorReadingPos++;

85 // reads leaf value

86 newLeaf = germinalVector[germinalVectorReadingPos % germinalVectorLength];

87 conversionFunc = leavesInfo[nextFunctionType].converter;

88 typeIdentifier = leavesInfo[nextFunctionType].ID;

89 newDecodedGenotype += conversionFunc(newLeaf);

90 // replaces germinal value with leaf type identifier

91 preEncGen.push(typeIdentifier, newLeaf);

92 germinalVectorReadingPos++;

93 preItemValue = germinalVector[

94 germinalVectorReadingPos % germinalVectorLength];

95 // important: as leaf types codes are numbers bigger or equal than 0.5,

96 // and newItemThreshold is always <= 0.5, leaf type id values

97 // always will pass when processing a retrotranscribed germinal vector.

98 listItem = 0;

99 newItemThreshold = 1 / (listsMaxNumItems - listItem);

100 // if the leaf is actually a list

101 if (listLeafTypes.includes(nextFunctionType)) {

102 while (preItemValue >= newItemThreshold

103 && listItem < listsMaxNumItems) {

104 germinalVectorReadingPos++;

105 newLeaf = germinalVector[

106 germinalVectorReadingPos % germinalVectorLength];

107 germinalVectorReadingPos++;

108 preItemValue = germinalVector[

109 germinalVectorReadingPos % germinalVectorLength];

110 newDecodedGenotype += "," + conversionFunc(newLeaf);

111 preEncGen.push(typeIdentifier, newLeaf);

112 listItem++;

113 newItemThreshold = 1 / (listsMaxNumItems - listItem);

114 }

156

Specimens generation
6.1. Metaprogramming of genotypes

115 }

116 }

117 notFilledParameters[notFilledParameters.length - 1]--;

118 // if all parameters of this depth level are written,

119 // deletes this count level and adds ")"

120 if (notFilledParameters[notFilledParameters.length - 1] == 0) {

121 do {

122 if (notFilledParameters.length > 1) {

123 notFilledParameters.pop();

124 expectedFunctions.pop();

125 openFunctionTypes.pop();

126 }

127 germinalVectorReadingPos++;

128 newDecodedGenotype += ")";

129 preEncGen.push(0); // replaces germinal value with closing function flag

130 notFilledParameters[notFilledParameters.length - 1]--;

131 } while (notFilledParameters[notFilledParameters.length - 1] == 0

132 && validGenotype == true)

133 }

134 if (notFilledParameters[0] > 0) newDecodedGenotype += ",";

135 }

136 chosenFunctionInfo = eligibleFunctionsLibrary.functionLibrary

137 [openFunctionTypes[openFunctionTypes.length - 1]]

138 [expectedFunctions[expectedFunctions.length - 1]];

139 nextFunctionType = chosenFunctionInfo.arguments[

140 chosenFunctionInfo.arguments.length - notFilledParameters[

141 notFilledParameters.length - 1]];

142 } while (notFilledParameters[0] > 0

143 && new Date() - newGenotypeStartTime < maxIntervalPerNewGenotype);

144 newDecodedGenotype.substring(0, newDecodedGenotype.length - 1); // omits trailing commas

145 reinitSeed(seedForAlea);

146 if (checkParenthesesBalance(newDecodedGenotype) == false) validGenotype = false;

147 if (validGenotype == false) {

148 newGenotype = evalExpr("s(v(" + defaultEvent + "))");

149 subGenotypes = {};

150 newGenotype.data = {

151 specimenID: getSpecimenDateName("not_viable_genotype"),

152 eventExtraParameters: extraParameters,

153 specimenType: "scoreF",

154 germinalVector: germinalVector,

155 localEligibleFunctions: localEligibleFunctions,

156 depthThreshold: genotypeDepthThreshold,

157 maxListCardinality: listsMaxNumItems,

158 seed: seedForAlea,

159 depth: 4,

160 leaves: extractLeaves(newGenotype.encGen),

161 playbackRate: playbackRate,

157

Specimens generation
6.1. Metaprogramming of genotypes

162 minQuantizedNotevalue: minQuantizedNotevalue,

163 stepsPerOctave: stepsPerOctave,

164 rating: 0,

165 };

166 }

167 else {

168 newGenotype = evalExpr(newDecodedGenotype);

169 newGenotype.data = {

170 specimenID: getSpecimenDateName(currentUser),

171 eventExtraParameters: eventExtraParameters,

172 specimenType: specimenType,

173 localEligibleFunctions: eligibleFunctions,

174 depthThreshold: genotypeDepthThreshold,

175 maxListCardinality: listsMaxNumItems,

176 seed: seedForAlea,

177 germinalVector: germinalVector,

178 renderTime: r3d((new Date() - newGenotypeStartTime) * 0.001),

179 encGenotypeLength: newGenotype.encGen.length,

180 decGenotypeLength: newDecodedGenotype.length,

181 depth: genotypeDepth,

182 leaves: extractLeaves(newGenotype.encGen),

183 germinalVectorDeviation: arraysDistance(newGenotype.encGen, germinalVector),

184 playbackRate: playbackRate,

185 minQuantizedNotevalue: minQuantizedNotevalue,

186 stepsPerOctave: stepsPerOctave,

187 rating: 0

188 };

189 }

190 return newGenotype;

191 }

Listing 50: Implementation of core function createGenotype

Let’s highlight some important details of this process which lies at the core of the
transformations:

The seven required arguments are the initial conditions described in Table 9.

The variables preEncGen and newDecodedGenotype store the genotype in its encoded
and decoded versions respectively. In the case of preEncGen, the received values in
germinalVector are converted or replaced according to the rules shown in Figure 34.

As previously discussed, if the nesting level of functions reaches the threshold de-
termined by the argument genotypeDepthThreshold, from that point onward, only
identity functions of the required type are used, eventually closing that branch of

158

Specimens generation
6.1. Metaprogramming of genotypes

the functional tree without new ramifications. This process takes place in lines 55-61.
In the construction of the Genotype functions library, the first function of each type
must be that identity function, accessed in lines 56-57.

The function findEligibleFunctionEncIndex, at line 66, approximates the nearest en-
coded index among the functions included in the argument localEligibleFunctions,
following the procedure explained in Section 5.1.4.

The maximum number of elements appearing in a list is limited by the initial con-
dition maxListCardinality, and depends on how many elements from the germinal
vector exceed the threshold set by newItemThreshold. If it surpasses this threshold, a
new number is added to the current list; otherwise, the list terminates at that point,
and the flag value of a closing function is inserted. To achieve equiprobability among
lists of any length within the permitted maximum, this threshold is modulated on
line 113 according to the Equation 29:

tn =
1

maxcard − n
(29)

where n is the position of an item in a list (starting with position 0), tn is the value
used by newItemThreshold to decide if a new value will be included in the list, and
maxcard is the maximal list length allowed by initial condition maxListCardinality.

If, at the end of the metaprogramming process, the genotype is declared invalid, in
line 146, to prevent a fatal error that halts other higher-level processes, an output
genotype using the defaultEvent is provided. This default expression is used for
various purposes at different points throughout the code.

Should the genotype be valid, the functional expression concluded at line 168 is
evaluated with evalExpr, generating the subspecimen based on the data structure
I previously discussed in the section. Along with this information, the data block is
added, which will later be used to construct the complete specimen.

The direct evaluation of expressions contained in strings is a practice that can entail
significant security risks. To circumvent these dangers, the algorithm uses the safer
auxiliary function evalExpr (Listing 51) instead of the eval function. More impor-
tantly, the main filter is the function evalDecGen, which is used with direct text inputs
and analyzes and reconstructs the expression. If it does not identify all functions as
part of the available library, it returns an error and does not evaluate the expression.

159

Specimens generation
6.1. Metaprogramming of genotypes

var evalExpr = str => Function("return " + str)();

Listing 51: Function evalExpr as alternative to eval

Listing 52 provides an example of calling the createGenotype function, as it occurs
internally in the higher-level processes discussed next.

1 createGenotype(

2 3, // extra parameters

3 'scoreF', // main function type

4 [1,2,3,4,5,6,7,9,10,11,12,26,27,28,29,41,42,43,44,48,58,98,99], // eligible functions

5 6, // depth threshold

6 10, // lists max. length

7 606599857109, // global seed value

8 [0.94, 0.26, 0.178] // germinal vector

9)

Listing 52: A call to the function createGenotype

The Object returned, in an intermediate stage between the subspecimen and the
specimen, includes several new keys necessary for subsequent processes, which I will
detail later on. The decoded genotype contained in decGen is a compact string. Listing 53

presents it in a formatted version, allowing for a better study of several of its features.

1 {

2 funcType: 'scoreF',

3 encGen: [1, 0.193496, 1, 0.472136, 1, 0.854102, 1, ... 243 more items],

4 decGen: 'sConcatS(s(v(e(nRnd(),mRnd(),aRnd(),iRnd(),pRnd(),pRnd(),pRnd()))),sConcatS(

sConcatS(sAutoref(1),sConcatS(sConcatS(sAutoref(1),sConcatS(s(v(e(n(2.645),m(44),a(39),i

(76.52),p(0.178),p(0.26),p(0.94)))),s(v(e(n(0.07178),m(50),a(502),i(34.99),p(0.26),p

(0.94),p(0.178)))))),sConcatS(sAutoref(3),sConcatS(s(v(e(n(2.645),m(44),a(39),i(76.52),p

(0.178),p(0.26),p(0.94)))),s(v(e(n(0.07178),m(50),a(502),i(34.99),p(0.26),p(0.94),p

(0.178)))))))),sAutoref(3)))',

5 encPhen: [0.618034, 0.562306, 0.426898, 0.618034, 0.301631, 0.062601, ... 68 more items],

6 phenLength: 9,

7 phenVoices: 1,

8 harmony: { root: 0.301631 },

9 data: {

10 specimenID: 'jlm-20231220_153902054-46',

11 eventExtraParameters: 3,

12 specimenType: 'scoreF',

13 localEligibleFunctions: [1,2,3,4,5,6,7,9,10,11,12,26,27,28,29,41,42,43,44,48,58,98,99],

160

Specimens generation
6.1. Metaprogramming of genotypes

14 depthThreshold: 6,

15 maxListCardinality: 10,

16 seed: 606599857109,

17 germinalVector: [0.94, 0.26, 0.178],

18 renderTime: 0.004,

19 encGenotypeLength: 250,

20 decGenotypeLength: 410,

21 depth: 10,

22 leaves: [

23 [61, 0.940006, 2.64499],

24 [66, 0.172821, 44],

25 [71, 0.261308, 39],

26 [76, 0.940024, 76.52],

27 [81, 0.178, 0.178],

28 [86, 0.26, 0.26],

29 ... 22 more items

30],

31 germinalVectorDeviation: 247.948504,

32 playbackRate: 1,

33 minQuantizedNotevalue: 0,

34 stepsPerOctave: 12,

35 rating: 0

36 }

Listing 53: Object returned by createGenotype

Among other constraints, the arguments in this example define a species of events
with three extra parameters, and use an exceptionally short germinal vector, consisting of
only three values, to easily illustrate how the loop process in reading and transforming
those three numbers is reflected in the writing of the genotype, as shown in the fol-
lowing Listing 53. Structures that repeat due to the cyclic reading of this triplet can be
observed. Specifically, from line 3 onwards, the loop creates a nested iteration of the expres-
sion sConcatS(sConcatS(sAutoref(1) which would otherwise repeat, creating a branch of
unlimited depth. However, due to the limitation imposed by depthThreshold = 6, only
identity functions are used from line 10 onwards, as their configuration solely calls leaf
values. Once that branch is closed and the current depth level is < 6, it is possible again to
select among all eligible functions to continue the metaprogramming process.

161

Specimens generation
6.2. Formatting of specimens

1 sConcatS(

2 s(v(e(nRnd(), mRnd(), aRnd(), iRnd(), pRnd(), pRnd(), pRnd()))),

3 sConcatS(

4 sConcatS(

5 sAutoref(1),

6 sConcatS(

7 sConcatS(

8 sAutoref(1),

9 sConcatS(

10 s(v(e(n(2.645), m(44), a(39), i(76.52), p(0.178), p(0.26), p(0.94)))),

11 s(v(e(n(0.07178), m(50), a(502), i(34.99), p(0.26), p(0.94), p(0.178)))))),

12 sConcatS(

13 sAutoref(3),

14 sConcatS(

15 s(v(e(n(2.645), m(44), a(39), i(76.52), p(0.178), p(0.26), p(0.94)))),

16 s(v(e(n(0.07178), m(50), a(502), i(34.99), p(0.26), p(0.94), p(0.178)))))))),

17 sAutoref(3)))

Listing 54: Decoded genotype generated by a germinal vector of only three values

6.2. Formatting of specimens

With the Object supplied by createGenotype, we are now in a position to complete a
full specimen, using the data architecture outlined in Table 2. This action is carried out
by the function specimenDataStructure, as shown in Listing 55. In addition to formatting
the received data, this function performs some additional actions in its initial lines before
returning the specimen:

At line 2, it formats the decodedGenotype so that it can be displayed in the Max inter-
face in a readable manner, introducing indentation, line breaks, and other elements.
It performs this formatting in various compactness options to accommodate each
user’s preferences. These formatted strings are passed as a separate JSON dictionary
to avoid extending the specimen with redundant information.

At line 3, it calculates the length of the encoded genotype.

At line 4, if the output is not of type scoreF, it wraps the decoded genotype in the
necessary layers to make it so, facilitating the direct editing and testing of any type
of function in the interface.

At line 5, it decodes the phenotype, which until now existed only in its encoded
version. This results in a structure as studied in Listing 49.

162

Specimens generation
6.2. Formatting of specimens

At line 6, the decoded phenotype is converted into the appropriate format for the
bach.roll module of the interface to display the interactive score in Max.

At line 7, it calculates the so-called generativityIndex, which is simply the ratio
between the length of the bach roll array and that of the encoded genotype. Sec-
tion 6.3.4 discusses how is this calculated.

From line 8 onward, the complete structure constituting the specimen is constructed
and returned.

1 var specimenDataStructure = specimenData => {

2 formatDecGen(specimenData.decGen);

3 var encGenotypeLength = specimenData.data.encGenotypeLength;

4 var wrappedEncPhen = wrapEncodedPhenotype(specimenData);

5 var decPhen = decodePhenotype(wrappedEncPhen);

6 var bachRoll = decodedPhenotype2bachRoll(decPhen);

7 var generativityIndex = r2d(bachRoll.length / encGenotypeLength);

8 return ({

9 metadata: {

10 specimenID: specimenData.data.specimenID,

11 comments: specimenData.data.comments,

12 GenoMusVersion: GenoMusVersion,

13 rating: specimenData.data.rating,

14 duration: r3d(bachRoll[3] * 0.001),

15 voices: decPhen.metadata.effectiveVoices,

16 events: decPhen.metadata.effectiveEvents,

17 depth: specimenData.data.depth,

18 encGenotypeLength: encGenotypeLength,

19 decGenotypeLength: specimenData.data.decGenotypeLength,

20 generativityIndex: generativityIndex,

21 germinalVectorLength: specimenData.data.germinalVector.length,

22 germinalVectorDeviation: specimenData.data.germinalVectorDeviation,

23 iterations: specimenData.data.iterations,

24 millisecondsElapsed: specimenData.data.millisecondsElapsed,

25 renderTime: r3d(specimenData.data.renderTime * 0.001),

26 history: specimenData.data.history

27 },

28 initialConditions: {

29 eventExtraParameters: specimenData.data.eventExtraParameters,

30 specimenType: specimenData.data.specimenType,

31 localEligibleFunctions: specimenData.data.localEligibleFunctions,

32 depthThreshold: specimenData.data.depthThreshold,

33 maxListCardinality: specimenData.data.maxListCardinality,

34 seed: specimenData.data.seed,

163

Specimens generation
6.2. Formatting of specimens

35 germinalVector: specimenData.data.germinalVector

36 },

37 playbackOptions: {

38 playbackRate: specimenData.data.playbackRate,

39 minQuantizedNotevalue: specimenData.data.minQuantizedNotevalue,

40 stepsPerOctave: specimenData.data.stepsPerOctave

41 },

42 encodedGenotype: specimenData.encGen,

43 decodedGenotype: specimenData.decGen,

44 encodedPhenotype: specimenData.encPhen,

45 subgenotypes: subGenotypes,

46 leaves: specimenData.data.leaves,

47 decodedPhenotype: decPhen,

48 roll: bachRoll,

49 });

50 };

Listing 55: Implementation of specimens creator specimenDataStructure

The Object returned by specimenDataStructure is what I defined as rendered specimen,
which contains all the genotype evaluation results necessary for its representation as music.
Storing specimens can be done in two ways: by saving all this information or by limiting
it to the necessary information to recreate it again. This is what was previously defined as
minimal data specimen. The brief function specimenMinimalData, in Listing 56, is limited to
creating an Object that only replicates those minimal elements.

The minimal data specimens, due to their reduced size, will be particularly useful in the
next stage of processing to expedite the generation of populations comprising numerous
specimens for tasks involving evaluation, selection, and evolution.

1 var specimenMinimalData = renderedSpecimen => {

2 return ({

3 metadata: {...renderedSpecimen.metadata},

4 initialConditions: {...renderedSpecimen.initialConditions},

5 playbackOptions: {...renderedSpecimen.playbackOptions}

6 });

7 };

Listing 56: Implementation of specimenMinimalData

164

Specimens generation
6.3. Specimen metadata

However, the UI allows saving a specimen in its rendered version, including complete
data from its evaluation and conversion to a score, enabling third-party applications to
access this information. Specifically, the decodedPhenotype has a straightforward structure
that can be easily converted into other standard formats such as MusicXML, MIDI, etc.
Indeed, the conversion to a Bach roll and the rendering of scores into SVG are performed
by accessing this data block.

6.3. Specimen metadata

The data contained in the metadata block has already been briefly explained in Table 2.
Most of them are self-explanatory, hence, I will only elaborate on the aspects that require
clarification.

6.3.1. specimenID

To set up a unique identifying label for each specimen, a string is composed using
the elements detailed in Figure 41. In addition to the username and the date and time of
generation, a number is added corresponding to the order of valid specimens generated
in the current session. This last number is necessary to avoid identical identifiers if more
than one specimen is generated within the same millisecond.

Figure 41: Composition of the specimenID to assign unique specimen names. This order ensures a chrono-
logical arrangement when displaying specimens in a list.

6.3.2. comments

User comments can be added at any time. A specimen can result from numerous
successive transformations, both manual and automatic. Comments are incremental and
can be seen as a log file for the user, aiding in recalling and identifying the selected
material.

165

Specimens generation
6.3. Specimen metadata

6.3.3. rating

The rating assigned to a specimen is also a normalized value between 0 and 1. Only the
last recorded value is collected, so it might have been modified several times throughout
its transformations. The rating can be set manually by a user or automatically in processes
designed to apply a function that evaluates its fitness value.

6.3.4. generativityIndex

In the context of specimen metaprogramming, I called index of generativity to the ratio
between the length of the bach roll array and that of the encoded genotype. This measure
gives us information about whether it exhibits a more declarative or generative-style
process: a higher generativityIndex indicates that more musical text has been generated
in proportion to the length of the code that generated it.

The bach roll array is used instead of the encoded phenotype because the former solely
encompasses effective events and voices, whereas the latter comprises all that is generated
before filtering out elements that are silent or redundant. Hence, the measurement of
generativity is more accurate by excluding those fragments of the phenotype that are
going to be discarded. This does not imply any kind of aesthetic evaluation or fitness; it is
merely a quantitative estimation about the nature of the compositional procedures used.

6.3.5. germinalVectorDeviation

As we have seen in Section 5.6 on retrotranscription, if a genotype is generated from
any numerical sequence, transformations are applied to that vector to ensure it can be
autotranscribed. The property germinalVectorDeviation compares the encoded genotype
with the germinal vector and measures the discrepancy between both vectors using the
function arraysDistance that employs Formula 30 to sum up the accumulated deviations
of each element in a vector with its counterpart:

deviation(germV, encG) = ∣ germVl − encGl ∣ +

m

∑

n=1

∣ germVn − encGn ∣ (30)

where germV is the germinal vector, encG is the encoded genotype generated from germV,
n is the n-th element of a vector, l is the length of a vector, and m =min(germVl , encGl) is
the length of the shortest vector.

166

Specimens generation
6.4. Specimen metadata

As can be seen, in the highly probable case where the germinal vector and encoded
genotype do not have the same length, each surplus-value adds 1 to the overall sum,
increasing that deviation as a penalty due to their length difference. When the germinal
vector has been computed through retrotranscription, for example when the genotype
has been manually edited, the deviation will be 0, as it is a backward-generated germinal
vector. In such cases, a value of deviation(germV, encG) < 0 implies that there is some error
in the retrotranscription process. Debugging was the main reason for adding this feature
in the metadata, but aside from this, it may have other uses in comparing transformations
of the same specimen.

6.3.6. history

Under this key, a log is being written, documenting all the actions that have been
performed since the creation of the specimen. Listing 57 shows an example of specimen
history that has undergone several stages of manual and automatic transformations. In
addition to noting the type of transformation, some log entries indicate the number of
voices and events and the duration of the generated score.

1 "history" : {

2 "1" : "Random new specimen - 4v 34e 10.168s",

3 "2" : "Mutated leaves, probability 0.5, range 0.3 - 4v 34e 10.116s",

4 "3" : "Selected as elite spec. #5 with rating 0.551 for generation 2 from generation 1",

5 "4" : "Seed 205862798854746 to 67538728584317 - 4v 34e 24.929s",

6 "5" : "Growed vertically - 5v 35e 24.929s",

7 "6" : "Growed horizontally - 6v 80e 44.6s",

8 "7" : "Typed genotype, novelty 0.0065 - 6v 80e 37.731s",

9 "8" : "Selected as elite spec. #2 with rating 0.856 for generation 3 from generation 2"

10 }

Listing 57: Example of history in a specimen metadata

Entry 7 of this history points that the genotype was manually edited, indicating a
novelty value. This is an index measured by the function stringsDistance, which gauges
how much the edited code has changed within a range from 0 to 1. This is accomplished
by using Levenshtein distance as the basis.60 If the resulting value is greater than 0.5, it
is considered so different from the original that it is treated as a new specimen (based on
fragments of previous code but deemed too distinct to be considered a simple variation).
60The Levenshtein distance is an algorithm used to determine the distance between two text strings. Put

simply, it considers how many editing operations are needed to transform one string into another. Among
its various applications, it is also used in the computational study of genetic material sequencing. [16]

167

Specimens generation
6.4. Playback options as epigenetic conditions

6.4. Playback options as epigenetic conditions

Alongside the initialConditions and metadata, we have seen how minimal data spe-
cimens include playbackOptions as an additional block that completes the necessary infor-
mation to produce a rendered specimen. Returning to the bioinspired metaphor, these de-
terminants would be equivalent to "epigenetic mechanisms," given that epigenesis refers to
external circumstances that induce changes in the final development of a phenotype. Thus,
two specimens with the same germinal vector and identical initial conditions may exhibit
phenotypes with very different characteristics based on changes in the playbackOptions.

We can then view these determinants as adjustments and transformations made in the
final phase of the process. If the initialConditions are constraints before the metapro-
gramming process, the playbackOptions allow users to make global changes in the last
phase of the generative process. This enables, above all, simple control from the interface
that conveniently modifies properties that can be very important in practical composition
work. Hence, it is straightforward to ensure that several specimens have the same rhythmic
grid, share attributes concerning their tempo, harmony, etc.

At the moment, only three of these final options have been implemented as a proof of
concept, which I detail below. However, there is a considerable number of other similar
options that affect dimensions such as articulation, dynamics, interval transposition, etc.,
and these will be added in upcoming versions.

6.4.1. Tempo control with playbackRate

This modification is technically trivial but crucial for the user to fine-tune the result
to the ideal tempo. When the value of playbackRate is changed, it simply alters the
corresponding key of the specimen. Since this modification is only superficial and does
not imply alterations beyond tempo, changes in the playback rate do not generate a new
specimen but rather overwrite the data of the current one.

6.4.2. Rhythm quantization with minQuantizedNotevalue

The minimum rhythmic quantization notevalue establishes a minimum duration in
seconds for any event and generates a series of multiples to which all durations are
adjusted in seeking the closest value to the original. A minQuantizedNotevalue = 0 means
that there is no quantization at all. One of the most obvious uses of this option is to

168

Specimens generation
6.4. Playback options as epigenetic conditions

standardize and combine many specimens on the same rhythmic grid, achieving rhythmic
structures without excessive complexities.

To provide an example illustrating the influence of this condition on the same genotype,
let’s start from the expression in Listing 58. This functional tree already has a certain depth
and a good number of branches.

1 sConcatS(

2 sAddS(

3 sHarmonicGrid(

4 sConcatS(

5 sConcatS(

6 sAddV(

7 sConcatS(

8 s(

9 vPerpetuumMobile(

10 nRnd(),

11 lmLine(

12 m(77),

13 m(64),

14 q(-9)),

15 la(138, 86, 132, 3, 49, 37, 261),

16 liWrap(

17 lFibonacci(

18 p(0.691632),

19 p(0.994283),

20 p(0.183172),

21 p(0.464113),

22 q(-35))))),

23 sAddS(

24 sConcatS(

25 sAddV(

26 sConcatS(

27 s(v(e(n(0.28303),m(106),a(7),i(34.83)))),

28 s(v(e(n(0.30092),m(74),a(124),i(38.79))))),

29 vMotifLoop(

30 ln(0.14889, 0.40164),

31 lm(82, 75),

32 la(60, 22, 32, 246),

33 li(30.04, 54.43, 30.77, 30.97, 52.91, 76.19, 42.96, 55.81, 62.52))),

34 sAutoref(5)),

35 s(

36 vPerpetuumMobile(

37 nRnd(),

38 lm(54, 36, 60, 36, 31),

39 laWrap(

40 l(0.298616, 0.974181, 0.181658, 0.9688, 0.724786)),

41 liAutoref(2))))),

42 vABCAB(

169

Specimens generation
6.4. Playback options as epigenetic conditions

43 vMotifLoop(

44 ln(0.54272, 1.36524, 0.0341, 0.12948, 0.35474, 0.08418, 0.66646),

45 lmWrap(

46 l5P(

47 pAutoref(3),

48 pAutoref(3),

49 pAutoref(1),

50 pRnd(),

51 pAutoref(3))),

52 laAutoref(1),

53 li(81.5, 18.37, 73.3, 20.61, 60.71, 71.63, 81.61, 49.91, 41.57, 41.37)),

54 vMotif(

55 lnLine(

56 nRnd(),

57 nRnd(),

58 q(-12)),

59 lm(59, 71, 85, 75, 53, 119, 97, 70),

60 laWrap(

61 l2P(

62 pAutoref(2),

63 p(0.176112))),

64 liWrap(

65 lBrownian(

66 p(0.965725),

67 pAutoref(3),

68 q(-10),

69 p(0.089379)))),

70 vPerpetuumMobileLoop(

71 n(0.26927),

72 lmWrap(

73 lTribonacci(

74 pAutoref(8),

75 pAutoref(3),

76 pGaussianRnd(),

77 pRnd(),

78 p(0.803329),

79 q(-7))),

80 laWrap(

81 lGaussianRnd(

82 pAutoref(3),

83 q(18))),

84 liWrap(

85 l4P(

86 pAutoref(1),

87 pAutoref(1),

88 pGaussianRnd(),

89 pAutoref(3)))))),

90 sHarmonicGrid(

91 sHarmonicGrid(

92 s2V(

93 vAutoref(3),

94 vMotifLoop(

95 ln(0.10998, 1.31791, 0.37039, 0.04489, 0.78768),

96 lmWrap(

170

Specimens generation
6.4. Playback options as epigenetic conditions

97 lFibonacci(

98 p(0.126965),

99 p(0.298616),

100 p(0.159767),

101 p(0.027738),

102 q(26))),

103 laRemap(

104 la(70, 17, 117, 36),

105 aRnd(),

106 aAutoref(2)),

107 li(15.84, 34.97, 46.39, 30.79, 58.09, 50.62, 42.88, 58.67))),

108 hBluesScale(

109 m(28))),

110 hBluesScale(

111 mAutoref(5)))),

112 sAutoref(3)),

113 hNaturalScale(

114 mRnd())),

115 sAutoref(3)),

116 sAutoref(3))"

Listing 58: Decoded genotype with depthThreshold = 12

Figure 42 displays in parallel five versions of the phenotype corresponding to diffe-
rent quantization values, ranging from no quantization to an adjustment with minimum
values of one second. Quantization is independent of the playbackRate, allowing both
configurations to be combined to achieve different rhythmic textures, regularities, and
densities.

As a complement, Figure 43 shows the beginning of the encoded phenotypes of these
five variations. It can be globally appreciated how the rendered sequence was altered.
The modifications caused in the specimen are relatively significant, so each new value of
minQuantizedNotevalue generates a new specimen with a different ID label, allowing for
a quick comparison between variants.

171

Specimens generation
6.4. Playback options as epigenetic conditions

Figure 42: Comparison of the same phenotype with different quantization values. The first one does not
quantize durations at all. The following ones establish increasingly longer values for minimum
durations. These examples use divisors of 1 for minQuantizedNotevalue, making it easy to see
the alignment of the events to the timegrid. The color hue indicates different voices. Note that
quantization is global and affects all voices.

172

Specimens generation
6.4. Playback options as epigenetic conditions

0

1/8

1/4

1/3

1

minimalQuantizedNotevalue =

Figure 43: Visualized encoded phenotypes with variations in minQuantizedNotevalue. Only the beginning
of each vector is visualized. Note that several blocks can be distinguished, and their progressive
alteration as the established minimum duration becomes larger.

6.4.3. Equal temperaments with stepsPerOctave

The possibility to modify the global tuning has been implemented in a rather straight-
forward manner, as a way to test possibilities. However, this does not prevent future
alternative options to globally adjust the pitches of a specimen to any harmonic grid from

173

Specimens generation
6.4. Playback options as epigenetic conditions

the interface. In the current version of the model, the only way to alter the harmony glo-
bally is controlled with stepsPerOctave, determining how many equal parts the octave is
divided into. This division must be combined with the representation made by the bach
roll, which allows for adjusting the precision of representing accidental alterations, conse-
quently altering the frequencies of the final pitches of each event. Figure 44 demonstrates
how this tuning control affects the global harmony of a specimen.

Figure 44: Comparison of the same excerpt with different temperaments. In the second and third examples,
divisions of the octave into equal parts produce intervals with a non-integer number of semitones.
However, in this notation, rounding to semitones from the bach roll setup is employed. This allows,
for example, the easy production of global harmonic grids such as the octatonic scale (alternating
semitone and whole tone), the natural scale, and many more. Red notes indicate that they have
been modified from the original first excerpt that uses standard tuning.

174

Specimens generation
6.4. Playback options as epigenetic conditions

It is also possible to set fractional divisions of the octave. This is an uncommon practice
but allows for the creation of global harmonic grids that may be of some interest. Figure 45

shows a couple of examples generated from the same previous fenotype.

Figure 45: Excerpts with non-integer values for stepsPerOctave. The first example applies a value close
to 1, creating stretched octaves and a dissonant harmony typical of dodecaphonic writing. The
second produces a concatenation of fourths. In these examples, all pitches are again rounded to
the nearest standard tempered semitone.

175

7
Evaluation and evolution

“ But there’s a big difference between “impossible” and “hard to
imagine”. The first is about it; the second is about you!

Marvin Minsky [102, p. 4]

When modeling artistic creativity with algorithms, probably the most evasive issue to
address is programming fitness functions. A thorough analysis of how to evaluate and
select products of automatic composition falls outside the scope of this research. However,
some insights can be provided to lay the groundwork for further research in this area,
based on preliminary experiments conducted during code testing.

By definition, the assessment of a piece of art can only make sense from a subjec-
tive point of view, since the goal of art is to provoke inner and personal reactions. These
individual responses are very dependent on cultural, social, and individual contexts. Fur-
thermore, the rating of musical ideas can be identified with the very act of composition, as
long as composing music is ultimately making choices. However, provided with enough
data, some predictions can be made regarding the expected reception for a new piece.

GenoMus is primarily conceived as a tool for discovering new music, both for users
with no technical skills in music composition and for expert composers who can imple-
ment their functions and musical data to feed the system and create creative feedback.
With this in mind, some guidelines for the evolutionary strategies of the model have been
established:

176

Evaluation and evolution
7.1. Specimen and variations

Multiple methods of evolution in parallel: Starting from a given genotype, a wide
range of manipulations can be combined, mutating and crossing leaves and branches
of the functional tree, and also introducing previously learned patterns at any time
scale. The architecture of germinal vectors as universally computable inputs has been
designed to enable high flexibility for any manipulation of preexisting material as
simple numeric manipulations.

Specimen autoanalysis: Some genotype functions can return an objective analysis of
a set of musical characteristics, such as variability, rhythmic complexity, tonal stability,
global dissonance index, level of inner autoreference, etc. These genotype metadata
are very helpful for reducing the search space when looking for some specific styles,
and allow any AI system to measure the relative distance and similarities to other
specimens, classify results, and drive evolution processes.

Human supervised evaluations: subjective ratings made by human users, attending
to aesthetic value, originality, mood, and emotional intensity, can be stored and classi-
fied to build a database of interesting germinal conditions to be taken as starting
points for new interactions with each user profile.

Analysis of existing music: selected excerpts recreated as a decoded genotype (as
the example shown in next Chapter 8), both manual or automated, can enrich the
corpus of the learned specimens of a general database.

7.1. Specimen and variations

Next, we will examine some of the transformation procedures that will later be used in
the creation of new generations of specimens. These methods can be activated manually
from the interface or programmed as part of more complex evolutionary routines.

7.1.1. Music from pure randomness

With barely the integration of very simple genotype functions in a basic library, some
appealing results have already emerged. Just to illustrate the expressiveness and stylistic
variability of the outputs, even without any application of machine-learning techniques,
at https://genomus.dev/thesis/early-experiments it provides a collection of sequences
generated during early tests with GenoMus, rendered without any manipulation.61

61The author of this thesis gave a TEDx talk on musical composition and AI, where some of these fragments
were played. The presentation is available at https://vimeo.com/lopezmontes/tedx-music-ia.

177

https://genomus.dev/thesis/early-experiments
https://vimeo.com/lopezmontes/tedx-music-ia

Evaluation and evolution
7.1. Specimen and variations

Figure 46: Two examples of specimens generated with a very short germinal vector. In each of the two
examples, three vectors are visualized: the germinal vector (of 3 and 8 values respectively), the
encoded genotype, and the encoded phenotype, which is transformed below into a score. Although
the germinal vector is read in a loop, the requirements of the chosen functions can take complex
paths. In the second example, it is possible to see how a loop has originated in the encoded genotype.

178

Evaluation and evolution
7.1. Specimen and variations

7.1.2. Starting with very short germinal vectors

The previous Figure 46 shows a pair of specimens generated with very short germinal
vectors. The vectors have been generated manually. With just a few values, a complete
program is written, and the generated music can be extensive, depending on the functions
that have been called when decoding the germinal vector as a decision tree that writes the
genotype. In Figure 47, the germinal vector generates a very long program.

[... 2273 more items]

Figure 47: A specimen generated with a very short germinal vector. The germinal vector, with only 5 val-
ues, triggers a metaprogramming process that ends in a genotype with more than 2000 tokens.
The phenotype is shorter in this case.

179

Evaluation and evolution
7.1. Specimen and variations

7.1.3. Leaves mutation

Figure 48: Four versions of a genotype with progressive leaves mutations are displayed. The beginnings of
four encoded genotypes are shown in parallel. At the top is the original, and successive mutations
appear towards the bottom. Note that the black and reddish bars (the function calls) do not change.
In the four resulting musical fragments, the progressive transformation can be observed.

The mutation of leaves completely preserves the structure of the functional tree of
the decoded genotype because only modifies the values of the leaves, which are the final
numerical parameters. Listing 59 shows an example of mutation. On the left, is the original

180

Evaluation and evolution
7.1. Specimen and variations

genotype; on the right, is the mutated one. It can be seen that only numerical values have
been modified, not the functions. It should also be noted that the numerical parameters
of the autoreference functions, such as pAutoref, are never altered, as this would imply a
change in the resulting internal functional structure.

sHarmonicGrid(sHarmonicGrid(

s(s(

vMotifLoop(vMotifLoop(

lnWrap(lnWrap(

l2P(l2P(

p(0.880346), p(0.778022),

p(0.504815))), p(0.504815))),

lm(54, 27, 56, 41, 58, 38, 57, 74, 56, 67), lm(54, 46, 64, 53, 58, 16, 45, 76, 56, 67),

laWrap(laWrap(

lRecursioOrder4(lRecursioOrder4(

rTanh(rTanh(

rRnd()), rRnd()),

pRnd(), pRnd(),

pAutoref(3), pAutoref(3),

pAutoref(1), pAutoref(1),

pAutoref(1), pAutoref(1),

qRnd())), qRnd())),

li(67.24, 49.9, 41.71, 54.77))), li(60.27, 49.9, 34.36, 49.52))),

hOctatonicScale(hOctatonicScale(

m(26))) m(47)))

Listing 59: Comparison of decoded genotypes before and after a leaves mutation

To achieve this, we need the auxiliary function extractLeaves, which takes a genotype
and returns an array like the one in Listing 60. This array gathers all the necessary infor-
mation to identify the position and values of all the leaves in the functional expression.

"leaves" : [[23, 0.608053, 69], [28, 0.972311, 106], [60, 0.113201, 38], [84, 0.89971, 1.5738],

[89, 0.150718, 42], [94, 0.550278, 85], [99, 0.494173, 49.770000000000003], [107, 0.386315,

0.17355] [... 97 more items]]

Listing 60: Array with positions and values of leaves returned by extractLeaves

From there, it is trivial to take a specimen and create a variation with those modifi-
cations. Listing 61 shows the implementation of mutateSpecimenLeaves, whose mission
is to extract the leaves from a genotype (line 8), modify their values avoiding (lines 9 to
24), and create a new specimen with that structure (lines 25 to 49). The mutation is done
considering two variables set by the user from the interface: mutProbability determines
how likely it is for a leaf to be mutated, and mutAmount limits the largest possible deviation
that can be applied in each mutation.

181

Evaluation and evolution
7.1. Specimen and variations

1 // mutates only leaves of a specimen according to certain probabilities

2 // mutProbability is mutations probability (0 -> no mutations, 1 -> everything mutated)

3 // mutAmount is range of a mutation, no trespassing interval [0, 1]

4 var mutateSpecimenLeaves = (originalSpecimen, mutProbability, mutAmount) => {

5 var startDate = new Date();

6 initSubgenotypes();

7 var mutatedSpecimen = { ...originalSpecimen };

8 var extractedLeaves = extractLeaves(mutatedSpecimen.encodedGenotype);

9 var numLeaves = extractedLeaves.length;

10 var mutationValue, tempLeafvalue;

11 for (var currentLeaf = 0; currentLeaf < numLeaves; currentLeaf++) {

12 if (Math.random() < mutProbability) {

13 mutationValue = mutAmount * (Math.random() * 2 - 1);

14 tempLeafvalue = mutatedSpecimen.encodedGenotype[extractedLeaves[currentLeaf][0]];

15 if (tempLeafvalue + mutationValue < 1 && tempLeafvalue + mutationValue > 0) {

16 mutatedSpecimen.encodedGenotype[extractedLeaves[currentLeaf][0]] =

17 r6d(tempLeafvalue + mutationValue);

18 }

19 else {

20 mutatedSpecimen.encodedGenotype[extractedLeaves[currentLeaf][0]] =

21 formatParam(tempLeafvalue - mutationValue);

22 }

23 }

24 }

25 reinitSeed(originalSpecimen.initialConditions.seed);

26 mutatedSpecimen = evalExpr(decodeGenotype(mutatedSpecimen.encodedGenotype));

27 mutatedSpecimen.data = {

28 specimenID: getSpecimenDateName(currentUser),

29 eventExtraParameters: originalSpecimen.initialConditions.eventExtraParameters,

30 specimenType: originalSpecimen.initialConditions.specimenType,

31 localEligibleFunctions: originalSpecimen.initialConditions.localEligibleFunctions,

32 depthThreshold: originalSpecimen.initialConditions.depthThreshold,

33 maxListCardinality: originalSpecimen.initialConditions.maxListCardinality,

34 seed: originalSpecimen.initialConditions.seed,

35 germinalVector: mutatedSpecimen.encGen,

36 renderTime: r3d((new Date() - startDate) * 0.001),

37 encGenotypeLength: mutatedSpecimen.encGen.length,

38 decGenotypeLength: mutatedSpecimen.decGen.length,

39 germinalVectorDeviation: 0,

40 depth: originalSpecimen.metadata.depth,

41 leaves: extractLeaves(mutatedSpecimen.encGen),

42 playbackRate: originalSpecimen.playbackOptions.playbackRate,

43 minQuantizedNotevalue: originalSpecimen.playbackOptions.minQuantizedNotevalue,

44 stepsPerOctave: originalSpecimen.playbackOptions.stepsPerOctave,

45 rating: 0,

46 iterations: 1,

47 millisecondsElapsed: 0

48 };

49 return specimenDataStructure(mutatedSpecimen);

50 };

Listing 61: mutateSpecimenLeaves creates variations of specimens by mutating leaves

182

Evaluation and evolution
7.1. Specimen and variations

7.1.4. Germinal vector mutation

A similar mutation process can be carried out on the germinal vector. In this case, no
distinction is made between the types of tokens, and any value in the sequence can be
altered, also using the variables mutProbability and mutAmount to adjust the depth and
extent of the mutation. Figure 49 compares side by side two germinal vectors with slight
differences and the decoded genotype resulting from each of them.

Figure 49: Comparison between a germinal vector and its mutation. This mutation affects the functional
structure, as can be seen in the genotypes under their respective germinal vector. The length of
both differs, and the functional structure, marked by the black bars, has visibly changed.

Comparing the impact of these changes on the code, in Figures 50 and 51, is clear how
the mutations have consequences of different magnitudes on the overall framework.62

62Just like in biology, some mutations are indifferent and do not show changes in the phenotype, and others
with drastic consequences, even by changing just one letter of the code.

183

Evaluation and evolution
7.1. Specimen and variations

sHarmonicGrid(
 sConcatS(
 sAddV(
 sConcatS(
 sHarmonicGrid(
 sHarmonicGrid(
 sConcatS(
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 nRnd(),
 mRnd(),
 aRnd(),
 iRnd()))),
 sHarmonicGrid(
 sAutoref(1),
 hPCSet(
 lm(64, 62, 43, 49, 63),
 m(73)))),
 hPentatonicScale(
 m(74))),
 sConcatS(
 sAddV(
 sConcatS(
 sConcatS(
 s(
 v(
 e(
 n(1.0713),
 m(69),
 a(1),
 i(42.58)))),
 s(
 v(
 e(
 n(0.01772),
 m(67),
 a(135),
 i(48.61))))),
 sConcatS(
 s(
 v(
 e(
 n(0.11269),
 m(58),
 a(31),
 i(23.28)))),
 s(
 v(
 e(
 n(0.15558),
 m(80),
 a(19),
 i(56.87)))))),
 vABCAB(
 vHarmonicGrid(
 v(
 e(
 n(0.12025),
 m(64),

sAddS(
 sConcatS(
 sAddV(
 sConcatS(
 sHarmonicGrid(
 sHarmonicGrid(
 sConcatS(
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 nRnd(),
 mRnd(),
 aRnd(),
 iRnd()))),
 sAutoref(1)),
 hHexatonicScale(
 mAutoref(1))),
 s2V(
 vPerpetuumMobile(
 nRnd(),
 lmWrap(
 lTribonacci(
 p(0.559776),
 p(0.765765),
 p(0.648769),
 p(0.32202),
 p(0.625002),
 q(3))),
 laRemap(
 laWrap(
 l(0.791211)),
 a(47),
 aAutoref(1)),
 liWrap(
 lGaussianRnd(
 p(0.191392),
 q(-9)))),
 vPerpetuumMobileLoop(
 nRnd(),
 lmWrap(
 lIterL(
 l(0.019047, 0.629864, 0.533928, 0.06391, 0.945831, 0.33728, 0.765765, 0.380897, 0.197037, 0.075365),
 q(-14),
 p(0.109178))),
 laAutoref(2),
 liWrap(
 lJitter(
 l(0.005334, 0.418109, 0.230681, 0.727062, 0.645859, 0.068854, 0.620039, 0.127021, 0.831874, 0.344264),
 p(0.729138),
 p(0.814235)))))),
 hJapanesePentatonicScale(
 m(63))),
 hPCSet(
 lmWrap(
 lLine(
 pAutoref(3),
 pAutoref(4),
 q(109))),
 m(38))),
 sAddV(

sHarmonicGrid(
 sConcatS(
 sAddV(
 sConcatS(
 sHarmonicGrid(
 sHarmonicGrid(
 sConcatS(
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 nRnd(),
 mRnd(),
 aRnd(),
 iRnd()))),
 sAutoref(1)),
 hJapanesePentatonicScale(
 mRnd())),
 s(
 vPerpetuumMobile(
 nAutoref(1),
 lmWrap(
 lRecursioOrder4(
 r(
 q(-11)),
 p(0.679032),
 p(0.367089),
 p(0.51297),
 p(0.257973),
 q(2))),
 laWrap(
 l3P(
 p(0.418109),
 p(0.856535),
 p(0.664472))),
 li(50)))),
 hPentatonicScale(
 m(75))),
 hJapanesePentatonicScale(
 m(49))),
 sAddV(
 sHarmonicGrid(
 sConcatS(
 s(
 vAutoref(1)),
 sHarmonicGrid(
 sAutoref(8),
 hPentatonicScale(
 m(47)))),
 hPentatonicScale(
 mRnd())),
 vMotifLoop(
 ln(0.73475),
 lmWrap(
 lFibonacci(
 p(0.645859),
 pAutoref(3),
 p(0.344264),
 pRnd(),
 qAutoref(1))),
 la(266, 38, 37, 163, 20),

sHarmonicGrid(
 sConcatS(
 sAddV(
 sConcatS(
 sHarmonicGrid(
 sHarmonicGrid(
 sConcatS(
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 nRnd(),
 mRnd(),
 aRnd(),
 iRnd()))),
 sHarmonicGrid(
 sAutoref(1),
 hPCSet(
 lm(64, 62, 43, 49, 63),
 m(73)))),
 hPentatonicScale(
 m(74))),
 sConcatS(
 sAddV(
 sConcatS(
 sConcatS(
 s(
 v(
 e(
 n(1.0713),
 m(69),
 a(1),
 i(42.58)))),
 s(
 v(
 e(
 n(0.01772),
 m(67),
 a(135),
 i(48.61))))),
 sConcatS(
 s(
 v(
 e(
 n(0.11269),
 m(58),
 a(28),
 i(23.28)))),
 s(
 v(
 e(
 n(0.15558),
 m(80),
 a(4),
 i(56.87)))))),
 vABCAB(
 vHarmonicGrid(
 v(
 e(
 n(0.12025),
 m(64),

Figure 50: Genotype with progressive germinal vector mutations. The expressions are directly superimposed
in various colors to visualize the deviation from the original (in black). For all these mutations,
mutProbability = 0.1 and mutAmount = 0.1.

184

Evaluation and evolution
7.2. Coevolutionary techniques

 a(44),
 i(13.56))),
 h(lm(51, 48, 74, 73, 87, 46, 104),
 lm(51, 38, 50),
 lm(66, 1, 69, 54, 80),
 lm(38, 76, 71, 37, 72, 40, 83, 55),
 m(89),
 p(0.856089),
 p(0.874203))),
 vPerpetuumMobile(
 n(0.00748),
 lm(33),
 la(27, 159, 58, 31, 32, 53, 30),
 li(55.04, 43.99, 26.07, 33.24, 52.03, 0.75, 54.34, 42.35, 63.09)),
 vAutoref(5))),
 sConcatS(
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 n(0.30496),
 m(75),
 a(69),
 i(59.68)))),
 s(
 v(
 e(
 n(0.09131),
 m(46),
 a(841),
 i(39.9))))),
 hPentatonicScale(
 m(1))),
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 n(0.04217),
 m(76),

 s(
 vHarmonicGrid(
 vMotifLoop(
 ln(0.73475),
 lmWrap(
 lIterL(
 lRecursioOrder4(
 r(
 q(5)),
 p(0.344264),
 p(0.729138),
 p(0.814235),
 p(0.691556),
 q(-15)),
 q(5),
 pAutoref(5))),
 la(55, 31, 14, 100, 47, 11, 39, 19),
 liWrap(
 lBrownian(
 pGaussianRnd(),
 pAutoref(8),
 qRnd(),
 pAutoref(3)))),
 hHexatonicScale(
 mAutoref(2)))),
 vPerpetuumMobile(
 nAutoref(1),
 lmWrap(
 lLine(
 p(0.691556),
 pAutoref(6),
 q(-7))),
 laRemap(
 la(49, 159, 55, 31, 14, 100, 47),
 a(103),
 aRnd()),
 liAutoref(3)))),
 vMotif(
 lnWrap(
 l4P(
 pAutoref(9),

()

 liRemap(
 li(22.75, 77.49, 27.43, 61.65, 46.53, 36.21, 36.8),
 iRnd(),
 i(37.04))))),
 vPerpetuumMobile(
 nRnd(),
 lmWrap(
 lJitter(
 l3P(
 pAutoref(3),
 pAutoref(8),
 pAutoref(3)),
 p(0.344264),
 pRnd())),
 la(238, 68, 78, 69, 26, 37, 75),
 li(57.69, 25.99))),
 sConcatS(
 sHarmonicGrid(
 sAddV(
 sConcatS(
 sConcatS(
 sAddV(
 sConcatS(
 sConcatS(
 sConcatS(
 s(
 v(
 e(
 n(0.4194),
 m(54),
 a(61),
 i(67.48)))),
 s(
 v(
 e(
 n(1.2626),
 m(113),
 a(135),
 i(34.01))))),
 sAddV(
 s(

(

 a(44),
 i(13.56))),
 h(lm(51, 48, 74, 73, 87, 44, 104),
 lm(51, 38, 50),
 lm(66, 1, 69, 54, 80),
 lm(18, 76, 71, 44, 72, 40, 83, 55),
 m(89),
 p(0.856089),
 p(0.874203))),
 vPerpetuumMobile(
 n(0.00748),
 lm(33),
 la(27, 159, 58, 31, 32, 53, 30),
 li(55.04, 43.99, 26.07, 33.24, 52.03, 0.75, 54.34, 42.35, 63.09)),
 vAutoref(5))),
 sConcatS(
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 n(0.30496),
 m(75),
 a(69),
 i(59.68)))),
 s(
 v(
 e(
 n(0.09131),
 m(46),
 a(841),
 i(39.9))))),
 hPentatonicScale(
 m(1))),
 sHarmonicGrid(
 sConcatS(
 s(
 v(
 e(
 n(0.0675),
 m(76),

()

Figure 51: Genotype with progressive germinal vector mutations (continuation)

Finally, we can see the musical realization of these same mutations in Figure 52. These
are just some examples of the many possibilities for automated manipulation of speci-
mens.

7.2. Coevolutionary techniques

In the current version of GenoMus, a very simple genetic algorithm has been introduced
to coordinate these types of manipulation in an overall workflow. The manipulations
implemented so far are listed in Table 11.

Each new generation integrates specimens obtained through different methods, de-
rived from the elite specimens selected from the previous generation by assigning them

185

Evaluation and evolution
7.2. Coevolutionary techniques

a manual or autonomous rating. Once a group of selected specimens is available, a new
generation can be constructed by combining such methods. These transformations have
been ordered according to the degree of deviation from the selected specimens. The types
of transformations that are more likely to deviate from the original specimen appear lower
down in Table 11.

Figure 52: Scores generated by small mutations on an initial germinal vector. The four germinal vectors at
the top correspond to the four scores according to their position. It can be seen that the small
numerical changes have had a significant impact on the modification of the music.

Let A and B be two selected specimens from a given generation. To obtain a new
generation, these transformations will be applied:

186

Evaluation and evolution
7.3. Sessions and global status

Transformation type Description

elite Selected specimens from previous generation, preserved un-
changed and chosen in decreasing order of rating.

changedSeed New seed value in the initialConditions of A, which will only
affect functions with intrinsic randomness.

merged Juxtaposition of the genotypes of A and B.

crossedBranches A branch of the decoded genotype of A is selected and replaced
by one from B.

replacedBranch A branch of the decoded genotype of A is selected and replaced
by another one generated randomly.

growedHorizontally New music is juxtaposed with A, wrapping its decoded genotype
in an sConcatS function along with new random code.

growedVertically New voices are added to A, wrapping its decoded genotype in
an sAddS function along with new random code.

mutatedGerminalVector Values in the germinal vector of A are modified with mutations
of increasing probability and range.

crossedGerminalVectors Part of the germinal vector of A is replaced by a fragment of the
germinal vector of B.

replacedGerminalSegment Part of the germinal vector of A is replaced randomly.

brandNew Completely new specimens added to the pool of candidates.

Table 11: Transformations applied to obtain a new generation. If there is a conflict between the characteristics
of specimens A and B involved in a cross, the properties of A are taken preferentially.

7.3. Sessions and global status

We have finally reached the largest data structure: the session. The global variable
statusGenoMus stores the complete global state of the program, allowing it to be saved and
reloaded at any moment. A session stores metadata and all descendant generations from
the start of that session. Within each generation, there are two groups of specimens: can-
didates to be chosen for use in the next generation, and those already selected. Listing 62

displays the beginning of an actual session data.63

63The specimens are saved in the minimal version that we studied in Section 3.1, to prevent these files from
becoming gigantic.

187

Evaluation and evolution
7.4. Sessions and global status

1 {

2 "sessionMetadata": {

3 "GenoMus_version": "1.00",

4 "user": "jlm",

5 "session": "sessions/GenoMus_status_jlm.json",

6 "totalGenerations": 5,

7 "currentGeneration": 1,

8 "currentGenerationCandidates": 256,

9 "currentGenerationSelected": 6,

10 "lastEvolutionTemperature": 84,

11 "lastSpecimensPerGeneration": 70,

12 "creationDate": "2024/01/10 22:54:19",

13 "lastUpdate": "2024/01/28 05:13:03",

14 "renderTime": 0

15 },

16 "generations": {

17 "1": {

18 "generationMetadata": {

19 "renderTime": 0,

20 "totalCandidates": 256,

21 "totalSelected": 6,

22 "selectedSpecimensRanking": [

23 0.888,

24 0.811,

25 0.786,

26 0.466,

27 0.254,

28 0.144,

29],

30 "selectedSpecimensID": [],

31 "originalCandidates": 371

32 },

33 "candidateSpecimens": {

34 "1": {

35 "metadata": {

36 "specimenID": "jlm-20240128_022506882-4",

37 "comments": {},

38 "GenoMusVersion": "0.10.03",

39 "rating": 0,

40 "duration": 51.027,

41 "voices": 1,

42 "events": 112,

43 "depth": 19,

44 "encGenotypeLength": 4112,

45 "decGenotypeLength": 10002,

46 "generativityIndex": 0.41,

47 "germinalVectorLength": 5,

48 "germinalVectorDeviation": 4109.341077729064,

49 "iterations": 1,

50 "millisecondsElapsed": 158,

51 "renderTime": null,

52 "history": {

53 "1": "Random new specimen - 6v 115e 67.294s",

54 "2": "Germinal vector edited, novelty 0.2 - 1v 112e 51.027s"

55 },

56 "storeIndex": 1

57 },

58 "initialConditions": {

59 "eventExtraParameters": 0,

60 "specimenType": "scoreF",

61 "localEligibleFunctions": [

62 [... 66349 more lines]

63 "selectedSpecimens": {

64 "0.144": {

65 "metadata": {

66 "specimenID": "jlm-20240110_225406653-27",

67 [... 79948 more lines]

Listing 62: Example of a GenoMus session stored in statusGenoMus

188

Evaluation and evolution
7.4. Temperature and segmentation

7.4. Temperature and segmentation

1 var segmentation = (totalItems, temperature) => {

2 temperature = adjustRange(temperature, 0, 100);

3 var modificationTypes = Object.keys(modificationTypesAbundance);

4 var typeItems, adjustment = 0, itemsCounter = 0;

5 modificationTypes.map(tag => {

6 typeItems = Math.round(totalItems * 0.01 * rescale(

7 temperature, 0, 100,

8 modificationTypesAbundance[tag].low,

9 modificationTypesAbundance[tag].high));

10 modificationTypesAbundance[tag].items = typeItems;

11 itemsCounter += typeItems;

12 });

13 adjustment = totalItems - itemsCounter;

14 if (modificationTypesAbundance.eliteSpecimens.items + adjustment >= 0) {

15 modificationTypesAbundance.eliteSpecimens.items =

16 modificationTypesAbundance.eliteSpecimens.items + adjustment;

17 }

18 };

Listing 63: Function segmentation to control the composition of new generations

Like many analogous systems, GenoMus uses a temperature parameter to probabilis-
tically control the range of deviation in transformations that will form the pool of can-
didates for the next generation. The temperature, within a range of 0 to 100, determines
the percentage of specimens constructed according to different types of transformations.
Applying this percentage to the total desired candidates determines the final content
that will form the next generation. This calculation is carried out with the function
segmentation. If the corresponding number of elite specimens for the new generation
exceeds the specimens selected from the previous generation, these same specimens are
included with mutated leaves with an increasing but very slight degree of mutation.

To distribute the proportion of methods used, the variable modificationTypesAbundance

is employed, which establishes default boundaries for each type of transformation in case
of minimum and maximum temperature.

189

Evaluation and evolution
7.4. Temperature and segmentation

1 var modificationTypesAbundance = {

2 eliteSpecimens: {low: 40, high: 6},

3 mutatedLeaves: {low: 18, high: 1},

4 changedSeed: {low: 10, high: 2},

5 merged: {low: 7, high: 3},

6 crossedBranches: {low: 7, high: 4},

7 replacedBranch: {low: 6, high: 5},

8 growedHorizontally: {low: 5, high: 6},

9 growedVertically: {low: 3, high: 7},

10 mutatedGerminalVector: {low: 2, high: 10},

11 crossedGerminalVectors: {low: 1, high: 15},

12 replacedGerminalSegment: {low: 1, high: 20},

13 brandNew: {low: 0, high: 20}

14 }

Listing 64: Temperature-based segmentation of transformations applied to evolution

190

8
Procedural analysis

“ Grammars may lead beyond unified composing and analysis models
and toward intelligent musical devices. An intelligent musical device will
be able to convert the iconic musical signal into symbolic form and be able
to recognize for example, not only frequency, amplitude, and duration [...]
but also larger syntactic forms such as phrases and other macrostructures
as well as extra-syntactical aspects of the music. Acting from a base of
programmed or even acquired grammatical knowledge, such a device will
be able to listen and respond intelligently not just to sound, but to music.

Curtis Roads [123, p. 54]

Music analysis is focused on capturing and compressing the information contained in
real music. As López de Mántaras [82] states, “in general, the rules don’t make the music,
it is the music that makes the rules”. In this section, this advice will be taken in a pretty
literal way.

To illustrate how GenoMus represents and encodes a piece of music using basic pro-
cedures in an abstract format, let’s model Clapping Music, a famous piece composed by
Steve Reich in 1972. Like many of his works, it begins with a minimal motif that under-
goes simple transformations with big consequences in the overall form. Two performers
start the piece by repeating a clapped pattern. One of the performers removes the first
note of the pattern after each cycle of eight repetitions, creating a phase shift among
both rhythmic lines. The work is finished when both players are in phase again. Figure 53

shows a compressed version of the score and one of the possible analytical deconstructions
in patterns.

191

Procedural analysis
8.1. Clapping Music as a procedural genotype

A B
C D
E

F
G
J

I K

L

each bar must
be repeated
8 or 12 times

continues until
both voices are
in phase again

H

Figure 53: Compressed score of S. Reich’s Clapping Music. Each box contains nested musical patterns
derived from the initial motif A. Derived pattern L embraces the whole piece. This is only one of
many possible procedural analyses of this famous work.

8.1. Clapping Music as a procedural genotype

There exist several ways to model the piece since its patterns can be obtained using
different methods.64 To create this genotype, I looked for the most concise code assembling
simple and generic operations. I have recreated the whole composition from transforma-
tions of the first four notes (motif A), applying six generic operations using the genotype
functions explained in Table 12.

The piece was modeled using the default simplest species which, according to the
formalism stated in Section 2.4, is defined as the set G = ⟨Types, t⃗, Maps, Funcs, Coders⟩.
The required elements for completing this definition are enumerated in Table 13.

Beyond the simple identity functions q, ln, lm, la, and li, which simply take and
return unchanged numeric values or lists that serve as leaf values of the functional tree,
only a few functions are needed to model Clapping Music. The processes carried out by
these functions are described in Table 12. The complete work is recreated by the decoded
genotype displayed in Listing 65 (the uppercase letters in the comments refer to the
patterns analyzed in Figure 53.

64Comparing different strategies of generating this work is an interesting question beyond this paper’s scope.
Each model can correspond to alternative manners of perceiving structural aspects. A different analysis but
also a procedural model of Clapping Music can be found in [65, p. 113].

192

Procedural analysis
8.1. Clapping Music as a procedural genotype

Function name Arguments type Output type Description

vMotifLoop

(lnotevalue,
lmidipitch,

larticulation,
lintensity)

voice

Creates a sequence of
events based on repeating
lists. The number of events
is determined by the
longest list. Shorter lists
are treated as loops.

vConcatV (voice, voice) voice
Concatenates two
voices sequentially.

vRepeatV (voice, quantized) voice
Repeats a voice a number
of times.

vSlice (voice, quantized) voice
Removes a number of
events at the beginning or
the end of a voice.

vAutoref (quantized) voice

Returns a copy of a
previous voice branch of
the functional tree,
referenced by an index.

s2V (voice, voice) score
Joins two voices
simultaneously.

Table 12: Genotype functions used to model Clapping Music. The table shows only functions that are not
mere identity functions that act as simple data containers for each parameter type.

Types t⃗ Maps Funcs Coders

{notevalue, (notevalue, {p2n, {q, {tran,
midipitch, midipitch, n2p, ln, dec,
articulation, articulation, p2m, lm, enc,
intensity, intensity) m2p, la, eval,
quantized, p2a, li, conv}
lnotevalue1, a2p, vMotifLoop,
lmidipitch, p2i, vConcatV,
larticulation, i2p, vRepeatV,
lintensity, p2g, vSlice,
event, g2p, vAutoref,
voice, q2p, s2V}

score} g2p}

Table 13: Minimal elements in default species required to model Clapping Music procedurally

193

Procedural analysis
8.1. Clapping Music as a procedural genotype

1 s2V(// score L: joins the 2 voices vertically

2 vSlice(// voice J: slices last cycle due to phase shift

3 vRepeatV(// phase G: F 13 times

4 vRepeatV(// cycle F: E 8 times

5 vConcatV(// pattern E: C + D

6 vConcatV(// motif C: A + B

7 vMotifLoop(// core motif A: 3 8th-notes and a silence

8 ln(1/8), // note values

9 lm(65), // pitch (irrelevant for this piece)

10 la(50), // articulation

11 li(60,60,90,0)), // intensities (last note louder for clarity)

12 vSlice(// motif B: A with 1st note sliced

13 vAutoref(0),

14 q(1))),

15 vSlice(// motif D: C with first two notes sliced

16 vAutoref(3),

17 q(2))),

18 q(8)),

19 q(13)),

20 q(-12)),

21 vConcatV(// voice K: F + H

22 vAutoref(7),

23 vRepeatV(// phase I: H 12 times

24 vSlice(// cycle H: F without 1st note, for phase shift

25 vAutoref(10),

26 q(1)),

27 q(12))))

Listing 65: Decoded genotype of Clapping Music model

Another key feature of the GenoMus grammar is the ability to set internal references
to branches inside a functional tree to reuse music materials throughout the development
of a piece. The argument supplied to a vAutoref function refers to a list of subexpres-
sions stored and updated after each genotype function is evaluated. An autoreference
can refer only to the available subexpressions indexed at the time of its evaluation, which
implies that during the generative metaprogramming process, a function will only reuse
preexisting musical material. As discussed before, this reflects how human perception and
memory work, establishing interrelations only with preceding elements.

194

Procedural analysis
8.1. Clapping Music as a procedural genotype

To clarify the autoreferences inside a genotype, Table 14 lists all subexpressions stored
at the end of the genotype evaluation. This network of internal pointers allows efficiency
and data reduction, and more importantly, it reflects the deep structure of music.

Index Subgenotypes

1 "vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0))"

2 "vAutoref(0)"

3 "vSlice(vAutoref(0),q(15))"

4 "vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0)),vSlice(

vAutoref(0),q(1)))"

5 "vAutoref(3)"

6 "vSlice(vAutoref(3),q(2))"

7 "vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0)),vSlice(

vAutoref(0),q(1))),vSlice(vAutoref(3),q(2)))"

8 "vRepeatV(vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),li(60,60,90,0)),

vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),q(2))),q(8))"

9 "vRepeatV(vRepeatV(vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),

li(60,60,90,0)),vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),q(2))),q(8)),

q(13))"

10 "vSlice(vRepeatV(vRepeatV(vConcatV(vConcatV(vMotifLoop(ln(1/8),lm(65),la(50),

li(60,60,90,0)),vSlice(vAutoref(0),q(1))),vSlice(vAutoref(3),q(2))),q(8)),

q(13)),q(-12))"

11 "vAutoref(7)"

12 "vAutoref(10)"

13 "vSlice(vAutoref(10),q(1))"

14 "vRepeatV(vSlice(vAutoref(10),q(1)),q(12))"

15 "vConcatV(vAutoref(7),vRepeatV(vSlice(vAutoref(10),q(1)),q(12)))"

Table 14: Subgenotypes of voice function type stored during the evaluation of Clapping Music genotype,
available to be pointed by internal autoreferences with function vAutoref. Only voice type subex-
pressions are shown, although they exist for other categories too.

195

Procedural analysis
8.2. Converting a procedure into a new genotype function

Figure 54 displays the functional tree of this decoded genotype, along with its internal
autoreferences. The tree is represented in inverse order, from left to right, to reflect how
substructures are feeding to subsequent functions that construct larger musical patterns,
as well as the subexpressions indexing order.

−12

Figure 54: Functional tree of Clapping Music decoded genotype, along with the patterns in the score.

8.2. Converting a procedure into a new genotype function

The encoded genotype of this Clapping Music model consists of 117 values, which is
remarkable for a piece lasting several minutes. This fact reflects how this work is a really
good example of the minimalist principle of reducing the development of a composition
to essential elements and to a process capable of exhibiting its capacity for autonomous
growth. Figure 55 shows the visualization of the abstract pure numerical representation
of the composition.

196

Procedural analysis
8.2. Converting a procedure into a new genotype function

Figure 55: Visualization of Clapping Music encoded genotype. The visualization of this numeric sequence,
using the color code detailed in Table 8, shows that most of the code consists of genotype functions
(introduced and closed by black long and short bars), while there are only a few leaf values (numeric
values given as final parameters, preceded by gray bars). As discussed previously, this vector is
also one of its related germinal vectors.

The genotype of a whole composition like this (or only part of it) can be automatically
flattened to create a new genotype function where all leaves are assembled as a single array
of arguments, although the numeric values that feed arguments for the autoreferences are
excluded from the arguments array of the new derivate function because of their structural
character. These numbers must be immutable to preserve the internal consistency of the
procedure. For instance, a new genotype function called sClapping could be created to be
handled as a new procedure, abstracted from the original piece and compacted following
the structure shown in Table 15.

Function Name Arguments Type Output Type Description

sClapping

(lnotevalueF,
lmidipitchF,
larticulationF,
lintensityF,
quantizedF,
quantizedF,
quantizedF,
quantizedF,
quantizedF,
quantizedF,
quantizedF)

scoreF

Creates two voices with
a repeated pattern with
a progressive phase
shift of the second voice
created by slicing notes
at the beginning of
the pattern.

Table 15: Data structure of the genotype function sClapping, a new function generated after flattening the
functional tree of Clapping Music shown in Listing 65.

197

9
Results

“ I have come to the conclusion that much can be learned about mu-
sic by devoting oneself to the mushroom. For this purpose I have recently
moved to the country. Much of my time is spent poring over “field com-
panions” of fungi. These I obtain at half price in second-hand bookshops,
which latter are in some rare next door to shops selling dog-eared sheets
of music, such an occurrence being greeted by me as irrefutable evidence
that I am on the right track.

John Cage [29, p. 274]

The outcome of this research is twofold: an open operational system that has already
proven its utility as a tool for augmented creativity, and a substantial number of artistic works
of various genres and characters. The system is still quite limited and can be seen as a
mere demonstrator, but now the path is clear to approach its expansion and enhancement,
continuing this process of, in the words of Roads [121], composing grammars.

A combination of software development and artistic research65 has been utilized.
Thereby, the material results I present here are of two types: technical (Appendix A)
and musical (Appendix B). Recapping the objectives described in the Introduction, O1, O2
and O3, concerning the conception of a framework and its practical implementation, have
been completed with the design and creation of GenoMus; O4, focused on artistic applica-
tion, has been extensively carried out with a variety of projects of different kinds; finally,
O5, related to the release of the tool, has been basically fulfilled and has much potential
development ahead. These three aspects are analyzed in detail below.

65The consideration of artistic research as legitimate sciencie per se [24, 36, 135] has been a topic of intense
debate in academia for two decades. This thesis presents a mixed case aiming for synergy between research
in art and computer science.

198

Results
9.1. A procedural framework optimized for metaprogramming

9.1. A procedural framework optimized for metaprogramming

The practical experiments with actual artistic applications have shown the strengths
and weaknesses of each version, and have been fundamental in laying the foundations
for the current prototype. Rather than introducing many different procedures, it has been
established that the priority was to lay solid foundations for building a flexible and easily
expandable platform. After these cycles of experimentation, creation, and development,
I have achieved these desired features:

Grammar based on a symbolic and generative approach to music composition and analy-
sis. GenoMus is focused on the correspondence between compositional procedures
and musical results. The analytical representation of music represented as trees has
been also used by Ando et al. [8], representing classical pieces. It adopts the geno-
type/phenotype metaphor, as many other similar approaches, but in a very specific
way.

Style-independent grammar, able to integrate and combine traditional and contemporary
techniques. In any approach to artificial creativity, a representation system is a pre-
condition that restricts the search space and imposes aesthetic biases a priori, either
consciously or unconsciously. The design of algorithms to generate music can be
ultimately seen as an act of composition itself. With this in mind, this proposal seeks
to be as open and generic as possible, to represent virtually any style, and to en-
close any procedure. The purpose of the project is not to imitate styles, but to create
results of certain originality, worthy of being qualified as creative. A smooth inte-
gration of modern and traditional techniques has been achieved. GenoMus allows
for the inclusion and interaction of any compositional procedure, even those from
generative techniques that imply iterative subprocesses, such as recursive formulas,
automata, chaos, constraint-based and heuristic searches, L-systems, etc. This simple
architecture integrates the three different paradigms described by Wooller et al. [157]:
analytic, transformational, and generative. So, a genotype can be viewed as a multi-
agent tree.

Optimized modularity for metaprogramming. Each musical excerpt is generated by a
function tree made with a palette of procedures attending all dimensions: events,
motifs, rhythmic and harmonic structures, polyphony, global form, etc. All function
categories share the same input/output data structures, which eases the implementa-
tion of the metaprogramming routines encompassing all time scales and polyphonic
layers of a composition, from expressive details to the overall form. This follows the

199

Results
9.1. A procedural framework optimized for metaprogramming

advice of Jacob [71] and Herremans et al. [60], who suggest working with larger
building blocks to capture longer music structures.

Support for internal autoreferences. In almost any composition, some essential pro-
cedures require the reuse of previously heard patterns. As many pieces consist of
transformations and derivations of motifs presented at the very beginning, this frame-
work enables pointing to preceding patterns. At execution time, each subexpression
is stored and indexed, being available to be referenced by the subsequent functions
of the evaluation chain. Beyond the benefit of avoiding internal redundancy when
there are repeated patterns, the possibility of creating internal autorefences of nodes
inside a function tree is an indispensable precondition for the inclusion of proce-
dures that demand the recursion and reevaluation of subexpressions. This kind of
reuse of genotype excerpts is also observed in genomics [144].

Consistency of the correspondences among procedures and musical outputs. To obtain an
increasing knowledge base, correspondences between expressions, encoded repre-
sentations, and the resulting music remain always the same, regardless of the forth-
coming evolution of the grammar and the progressive addition of new procedures
by different users. To encode musical procedures, each function name is assigned
a number, but to keep the encoded vectors as different as possible, function name
indices are evenly scattered across a normalized interval and are registered in a
library containing all available functions.

Possibility of generating music using subsets of the complete library of compositional pro-
cedures. Before the automatic composition process begins, users can select which
specific procedures should be included or excluded from it. It can also be used to set
the mandatory functions to be used in all the results proposed by the algorithm.

Applicability to other creative disciplines beyond music. Although this framework is pre-
sented for the automatic composition of music, the model is easily adaptable to other
areas where creative solutions are sought. Whenever it is possible to decompose a
result into nested procedures, a library of such compound procedures can be created,
taking advantage of their encoding as numerical vectors that serve as input data for
machine learning algorithms.

200

Results
9.2. Artistic research shaping software

9.2. Artistic research shaping software

Perhaps the key point of the methodology has been a years-long alternation between
periods dedicated to software development and others to testing it in the creation of
musical projects intended for real public events. The role that each version of the software
has played in these musical pieces has been diverse: in some cases, it was limited to
obtaining materials that were combined with more traditional writing techniques, while
in others, almost the entire piece was generated by the system, with the composer only
selecting from the multiple available outcomes.

Since the first sketches presented in 2015 [84], each iteration of the project has been
tested with the composition of real instrumental and electroacoustic pieces [83, 85, 86].
Following the completion of each artistic project, potentialities, weaknesses, or needs were
identified to configure new versions. Throughout these iterations, it became evident which
data and interrelation architecture between functions could be improved. On five occasions,
a total code rewrite was carried out based on the knowledge extracted from practical
applications. Retrospectively, it can be stated that the model would be much less flexible
and expressive without these intensive testing periods.

Table 16 provides a very concise summary of the iteration stages in the model’s deve-
lopment, associating each musical project with the main conclusions derived from it. The
title of each project is a link to the section in Appendix B, which provides many more
details about the model’s application in its composition.

Musical project Primary conclusions

Threnody for Dimitris Christoulas
for flute (alt. piccolo), clarinet (alt. bass clarinet),
violoncello, piano and tape — 14 min

Initial prototype test for exploring the
generative possibilities of the functional
paradigm. Application for the automatic
composition of melodic patterns from
recursive equations generated from a library of
basic mathematical functions. Used exclusively
for the pitch dimension.

Interesting generative paradigm that is easy to
program and produces results of arbitrary
complexity that need to be constrained.

The musical results are diverse and inspiring,
although since they are only one-dimensional
patterns, their incorporation into real music requires
a lot of manual arrangement.

Practical work reveals limitations that demand
real-time visualization and auditory tools for the
generator algorithm’s outputs.

201

Results
9.2. Artistic research shaping software

Ada + Babbage − Capricci
for violoncelo and piano — 20 min

Experimentation with a limited library of
procedural functions typical of musical
composition (creation of motifs, repetition,
transposition, inversion, reversion, expansion,
etc.). Implementation of a self-reference
system as an essential feature.

The use of motifs in function trees results in a highly
effective source of musical variety with recognizable
thematic unity.

The importance of direct self-references to branches
of the functional tree for their reuse and
modification is demonstrated.

The initial self-reference system necessitates
inefficient transformations and recoding of the code.
The numerical encryption solution for code
fragments is intricate, but at the same time, it will
open the door to ideas about encoding that will later
be fundamental.

Microcontrapunctus
for 24 channels tape — 7 min

Integrated use of multiparameters to generate
an entire electroacoustic composition. Export
as Csound scores for multichannel granular
synthesis. Addition of new procedural
functions more typical of sound synthesis.

The tool exhibits great potential in the field of
electroacoustics, especially for handling high density,
both in terms of rhythm and the complexity of
involved parameters.

Need for a roll score representation for monitoring
results quickly.

Creative efficiency: once the generative algorithm
was ready, the entire composition was composed in a
few hours.

Seven Places
for violin, tape and optional video — 7 min

Creation of scores for sound synthesis. First
model for the generation of multiparameter
events (with microtonal pitch, complex
rhythm, and dynamics). First prototype using
bach package for the visualization of
generated scores.

Need to find a method of using multiparameters in a
flexible and unified manner without adding too
much complexity to the functional tree.

Conventional notation is inappropriate for working
with the full range of possible rhythmic complexity
without quantization.

It is much more convenient to visualize the scores
with bach.roll than with bach.score, for performance
efficiency and simplicity in internal conversions.

202

Results
9.2. Artistic research shaping software

Choral Riffs from Coral Reefs
for tape — 8 min

Use of real-time MIDI output playback for
highly dense rhythmic scores, applied to
external physical modeling virtual instruments
outside of Max. Experimentation with manual
changes for mutation, seed change, and other
initial conditions.

Efficiency in the speed of execution. Once again, a
piece created almost entirely algorithmically, with
minimal tasks of assembly and final mixing.

Need to optimize performance to achieve smooth
real-time usage.

Highly unexpected musical outcomes, resulting in a
very different style from previous electroacoustic
pieces.

Juno
for brass septet and optional tape — 4 min

Experiment for generating harmonic
progressions based on constraints for the
desired chord characteristics (both internally
and in transitions between them), as well as
for the template of instruments involved and
their respective registers.

Development of ideas for the implementation of
specific functions for harmonic grids.

Potential of this constraint-based formalization: the
composition is created very quickly, with many
fragments that required minimal adaptation.

Openings for FACBA Podcasts
for tape — 3 min

Direct creation of intro themes, without
additional edition. Testing the integration of
Node.js withtin the Max interface and a more
refined system of sheet music representation.
Addition of new procedural functions.

The use of Node.js represents a significant leap in
efficiency, computational speed, and overall interface
fluidity. Being able to use a more up-to-date version
of JavaScript allows for many improvements in the
core code.

The most effective way to store the generated scores
and visualize them in Max is by using JSON format
syntax embedded in dictionaries.

The selection and rejection of ideas is much faster
with better visual feedback from the score.

Gradual mutation functions are effective for
generating variations. With the new functions, a
wider range of styles is achieved, ranging from the
most abstract contemporary to much simpler and
effective patterns for more commercial uses.

203

Results
9.3. An open tool for augmented musical creativity

Tiento
for binaural tape — 35 min

Experimentation with a new use case as a
real-time controller for an independent audio
sample manipulation patch. Creation of
Csound scores for real-time synthesis within
Max. Preliminary user experience, including
collaboration with composer Pilar Miralles.

The effectiveness and value of being able to work
with many parameters simultaneously, now
controlling an interface designed for human
manipulation, are evident.

The results are musically interesting due to the
simultaneous control of many elements, which
would be impossible to achieve manually.

The algorithm’s output functions as a movement score,
enabling the repetition of sequences, their subtle
modification, and the creation of real-time
modification patterns that would otherwise be
unattainable.

Sound synthesis in Csound creates a highly varied
sound palette, with often unexpected results in
timbres and motivic sequences.

The interface allows other users to use the
application directly and intuitively, with minimal
specific instruction.

Rudepoema na penumbra
for quadraphonic tape — 23 min

Experimentation with the final system for
real-time multiparameter control via OSC for
sound synthesis with SuperCollider.

Good rhythmic fluency and precision of the
performance controlled by OSC. It is more
convenient for electroacoustics because it is not as
limited in the range of parameter values.

It is interesting to create a final layer of parameter
remappings by the user before sending the events to
the final destination. This greatly increases
productivity and the recombination of fragments
and allows for the modulation of harmonic,
rhythmic, textural, etc. to be more coherent.

Table 16: Iterative stages of prototype creation. The title of each project is a link to the section in Appendix B,
which provides many more details about the model’s application in its composition.

9.3. An open tool for augmented musical creativity

The website https://genomus.dev now serves as the primary resource for the disse-
mination, documentation, and development of GenoMus. This project is open-source and
represents the most tangible result of this research cycle.

204

https://genomus.dev

10
Conclusions

“ Guerrero passed away in October 1997. Months before, Guerrero
mentioned to me how he wanted his opus ultimum to be: not a composition,
but a simple algorithmic formula. His desire was that anyone, using this
algorithm, could compose a piece of music, each one different from the
other yet connected by a common mathematical root. His intention was to
leave behind an ultimate legacy, an idea so pure that anyone who wished
could extract their own personal music from it without altering its essence.
The algorithm was one of many topics that came up in that conversation.
We never spoke of it again. However, as I reflect now, could Guerrero’s body
of work be seen as a gradual attempt to approach that universal algorithm
capable of encompassing everything?66

Stefano Russomanno [129, p. 107]

From the research and development cycle of tools documented in this thesis, the follo-
wing conclusions can be drawn, which pertain to both the issues of knowledge engineering
and those specific to artistic application:

C1 ● Importance of iterative development with alternation between technical proto-
typing and artistic application.

The process has shown that direct experimentation with real creative projects is
essential to identify shortcomings and potentialities in the development of successive
prototypes. Many initial ideas for implementing a feature have changed when it
came to recreating musical passages or introducing certain procedures. Often, the
modeling of such fragments has indicated paths for prototyping specific tasks.

66Author’s translation.

205

Conclusions

C2 ● Efficiency of encoding based on open and close indicators.

Various ways of encoding processes and musical output as one-dimensional vec-
tors have been experimented with. The proposed system has proven to be the most
expressive and flexible. This primarily stems from how the metaprogramming sub-
routines operate, manipulating one-dimensional numerical vectors through stacking,
substitution, truncation, etc. The use of flags with extreme numerical values helps to
easily discriminate structures and substructures.

C3 ● Suitability of an open structure of the event element.

The variable architecture of the event, defined by the addition of extra parameters,
enables system adaptation to various output format requirements, catering to specific
needs. With the proposed encoding framework, the higher-level structures voice and
score operate without changes.

C4 ● Retrotranscription as a bidirectional dual representation of metaprogramming
processes.

The mechanism known as retrotranscription has become one of the pillars of the
model. Its necessity was not anticipated at the beginning of the research, but it ulti-
mately is the most notable technical feature of the system. Retrotranscription allows
a numerical vector to be simultaneously the abstract representation of a program
and a decision tree that writes that same code with metaprogramming. The primary
application of this bidirectionality is that, from code created or manually edited, a
purely numerical counterpart can be directly introduced into any machine learning
mechanism.

Having access to the dual numeric and textual representation at any point in the
workflow has enabled a new way of approaching assisted composition. Pure genera-
tive processes can alternate with manual editing. This integration of mixed processes
quickly leads to results that combine user control and the surprising capacity of
metaprogramming.

C5 ● Interest of the germinal vector as a generating element.

Although initially the germinal vector was conceived as the representation of
a simple initial decision tree, the retrotranscription mechanism made it take on
unexpected interest. Particularly in the case of very short vectors that require cyclical
reading, highly complex music is generated from a minimal generating element.

206

Conclusions

Moreover, this implies a close link between the different sonic dimensions of musical
sequences.67

C6 ● Influence of parameter mapping on generative processes of metaprogramming and
evolution.

The tasks of searching, selecting, evolving, and modeling outcomes from pure
randomness in metaprogramming are heavily impacted by the design of the mapping
for fundamental parameters like duration, pitch, articulation, and intensity. Since
encoding is done with a limited range, a compromise between the size of the latent
musical space and the probability of finding balanced results is necessary.

Expanding the search space increases the possibility of finding results with un-
balanced characteristics. After experimenting with many possible conversions, the
best model combines a very wide spectrum of values for each parameter with the
use of a Gaussian distribution, so that extreme results are possible but unlikely.

C7 ● Various applications of the golden encoded integers.

A remapping function as unusual as that of the golden encoded integers emerged
from a very specific need: to optimize the uniform distribution of pointers within
a numerical range without knowing their current or future quantity. However, this
conversion has turned out to be useful for many more encoding purposes than
initially expected.

C8 ● Multiplicity of workflows with the interface.

The user interface integrates generative processes and evolutionary algorithms
along with manual editing and selection. This diversity of manipulations has led to a
wide variety of ways of working with the tool, sometimes unanticipated. In particular,
the graphical manipulation of the germinal vector and its real-time impact on the
metaprogramming of genotypes represents a new way of programming from a visual
input, thereby swiftly exploring a multitude of possibilities. Sending sequences as
files or in real-time with different formats can be applied to musical notation, sound
synthesis, the use of virtual instruments, or any other type of software (not necessarily
musical) that operates sequentially.

67This interrelation between melodic motifs, rhythmic patterns, and sequences of articulation and dynamics
is characteristic of techniques such as integral serialism; subsequent procedures and styles, such as certain
branches of spectralism, also establish these very unusual interrelations until then.

207

Conclusions

C9 ● Increase in stylistic flexibility and productivity of the tool with an optional final
layer of manual processing.

Having a palette of options for the final transformation of the musical result
is very convenient for giving harmonic, rhythmic, and textural consistency to di-
verse materials. This facilitates the quick combination of fragments for subsequent
composition processes.

C10 ● Evolutionary metaprogramming as reverse engineering for musical analysis and
style imitation.

The selection and transformation processes designed for automatic composition
can be reversed to approach a phenotype serving as fitness function. Although this
mode of work has been tested only with simple initial situations, it has been observed
that evolutionary metaprogramming routines can perform tasks of analysis and
generation of compositions with characteristics close to the given model.

C11 ● Feedback between open serendipity, the perception of underlying structures, and
the evolution of musical listening.

The relationship between the generation of materials and their listening mutually
affects and co-evolves. Production from pure randomness exposes the ear to intricate
internal structures. After many hours of listening to musical fragments produced
during the tool’s prototyping, it has been observed that the musical ear is capable of
perceiving the existence of many layers of internal organization not evident in the
score. This is the case even with very complicated genotypes, which are difficult to
discern by reading the self-generated code.

❋ ❋ ❋

Returning to the hypothesis formulated at the beginning of this work, it can be con-
cluded as a global conclusion that a meaningful procedural representation of music with a
dual character is indeed possible, both as compressed data and in a form that is readable
and manageable as a programming language. Likewise, it has been verified that the
interrelation between both representation systems opens the field to new methods of
artistic creation that enhance the synergy between current and future machine-learning
techniques and augmented human creativity.

Let this research serve as one more stepping stone towards the democratization of new
means of expression that expand the diversity of artistic sensibilities.

208

11
Conclusiones

“ Guerrero falleció en octubre de 1997. [...] Meses antes, [...] Guerrero
me comentó cómo quería que fuese su opus ultimum: no una composición,
sino una simple fórmula algorítmica. Su deseo era que cualquiera, a partir
de este algoritmo, pudiese componer una pieza musical: cada una dife-
rente de la otra y al mismo tiempo ligadas entre ellas por una común
raíz matemática. Su voluntad era dejar, como legado extremo, una idea
tan pura que todos los que quisieran pudiesen extraer de ella una música
personal sin modificar su esencia. El algoritmo fue uno de los tantos temas
que se deslizaron en aquella otra conversación. [...] Nunca volvimos a
hablar de ello. Sin embargo, ahora que lo pienso, ¿no será acaso la obra de
Guerrero un intento gradual de acercarse a ese algoritmo universal capaz
de abarcarlo todo?68

Stefano Russomanno [129, p. 107]

Del ciclo de investigación y desarrollo de herramientas que ha sido documentada en
esta tesis pueden extraerse las siguientes conclusiones, que atañen tanto a las cuestiones
de ingeniería del conocimiento como a las propias de la aplicación artística:

C1 ● Importancia del desarrollo iterativo con alternancia entre prototipado técnico y
aplicación artística.

El proceso de trabajo ha mostrado que la experimentación directa con proyectos
reales de creación es imprescindible para identificar carencias y potencialidades en
el desarrollo de prototipos sucesivos. Muchas ideas iniciales para la implementación
de alguna característica se han visto modificadas cuando se trataba de recrear
pasajes musicales concretos o introducir determinados procedimintos compositivos.

209

Conclusiones

En muchas ocasiones el modelado de estos fragmentos ha señalado el camino para
el prototipado de funciones específicas.

C2 ● Eficiencia de la codificación basada en indicadores de apertura y cierre.

Se han experimentado diversas maneras de codificar procesos y salida musical
como vectores unidimensionales. El sistema propuesto ha resultado ser el más ex-
presivo y flexible. Esto se deriva principalmente de cómo funcionan las subrutinas
de metaprogramación, que manipulan los vectores numéricos unidimensionales me-
diante apilado, sustitución, truncamiento, etc. El uso de flags con valores numéricos
extremos ayuda a discriminar fácilmente estructuras y subestructuras.

C3 ● Conveniencia de una estructura abierta del elemento event.

La arquitectura variable del event, determinada por el número de parámetros
extra, permite adecuar el sistema a cualquier requisito del formato de salida para
adaptarse así a diferentes requerimientos concretos. Con el marco de codificación
propuesto las estructuras de nivel superior voice y score operan sin cambios.

C4 ● Retrotranscripción como representación dual bidireccional de los procesos de
metaprogramación.

El mecanismo denominado retrotranscripción se ha convertido en uno de los
pilares del modelo. Su necesidad no fue anticipada al comienzo de la investigación,
pero finalmente es la característica técnica más destacada del sistema. La retrotrans-
cripción posibilita que un vector numérico sea al mismo tiempo la representación
abstracta de un programa y un árbol de decisión que escribe ese mismo código
con metaprogramación. La principal aplicación de esta bidireccionalidad es que, a
partir de código creado o editado manualmente, se puede introducir de manera
directa una contrapartida puramente numérica del mismo en cualquier mecanismo
de aprendizaje automático.

Contar en todo momento con la representación dual numérica y textual ha posi-
bilitado una nueva manera de trabajar la composición asistida. En el flujo de trabajo
se pueden alternar los procesos generativos puros con la edición manual. Esta inte-
gración de procesos mixtos lleva rápidamente a resultados que combinan control del
usuario y capacidad de sorpresa por parte de la metaprogramación.

C5 ● Interés del germinal vector como elemento generador.

Aunque inicialmente el vector germinal se concibió como la representación de
un simple árbol de decisión inicial, el mecanismo de la retrotranscripción hizo que
tomara un interés inesperado. Especialmente en el caso de vectores muy cortos que

210

Conclusiones

requieren leerse cíclicamente, se genera música de gran complejidad a partir de un
elemento generador mínimo. Además, esto implica una vinculación estrecha entre
las diferentes dimensiones sonoras de las secuencias musicales.69

C6 ● Influencia del mapeo de parámetros en los procesos generativos de metaprogra-
mación y evolución.

Las tareas de búsqueda, selección, evolución y modelado de resultados a partir de
la aleatoriedad pura en la metaprogramación se ven muy afectados por el diseño del
mapeo de los parámetros fundamentales de duración, altura, articulación e intensi-
dad. Dado que la codificación se hace con un rango limitado, es necesario encontrar
un compromiso entre el tamaño del espacio musical latente y la probabilidad de
encontrar resultados equilibrados.

La ampliación del espacio de búsqueda incrementa la posibilidad de encontrar re-
sultados con características desequilibradas. Tras experimentar con muchas posibles
conversiones, el mejor modelo conjuga un espectro muy amplio de valores para cada
parámetro con el empleo de una distribución gaussiana, de modo que los resultados
extremos sean posibles pero poco probables.

C7 ● Aplicaciones diversas de los golden encoded integers.

Una función de remapeo tan poco habitual como la de los golden encoded integers
surgió de una necesidad muy particular: optimizar la distribución uniforme de
punteros en un rango numérico sin conocer su cantidad actual o futura. Sin embargo,
esta conversión ha resultado útil para bastantes más propósitos de codificación de
los previstos.

C8 ● Multiplicidad de flujos de trabajo con la interfaz.

La interfaz de usuario integra procesos generativos y algoritmos evolutivos junto
a la edición y selección manual. Esta diversidad de manipulaciones ha llevado a una
amplia variedad de modos de trabajar con la herramienta, a veces no anticipados.
En particular, la manipulación gráfica del vector germinal y su impacto en tiempo
real en la metaprogramación de genotipos es una nueva manera de programar a
partir de una entrada visual, y explorar así muchas posibilidades con agilidad. El
envío de secuencias como archivos o en tiempo real con diferentes formatos puede
aplicarse a la notación musical, a la síntesis de sonido, al empleo de instrumentos
virtuales, o a cualquier otro tipo de software secuencial, no necesariamente musical.

69Esta interrelación entre motivos melódicos, patrones rítmicos y secuencias de articulación y dinámicas es
característico de técnicas como el serialismo integral; procedimientos y estilos posteriores, como ciertas
ramas del espectralismo, también establecen estas interrelaciones muy poco usuales hasta entonces.

211

Conclusiones

C9 ● Incremento de la flexibilidad estilística y la productividad de la herramienta con
una última capa opcional de procesado manual.

Contar con una paleta de opciones de transformación final del resultado musical
es muy conveniente para dar consistencia armónica, rítmica y textural a materiales
diversos. Esto facilita la rápida combinación de fragmentos para procesos posteriores
de composición.

C10 ● Metaprogramación evolutiva como ingeniería inversa para el análisis musical y la
imitación de estilo.

Los procesos de selección y transformación diseñados para la composición au-
tomática pueden invertirse para acercarse a un fenotipo en el rol de fitness function.
Aunque este modo de trabajo se ha probado solo con situaciones sencillas de par-
tida, se ha observado que se consiguen rutinas de metaprogramación evolutiva que
funcionan como análisis y generación de composiciones con características próximas
al modelo dado.

C11 ● Retroalimentación entre la serendipia abierta, la percepción de estructuras subya-
centes y la evolución de la escucha musical.

La relación entre la generación de materiales y su escucha se afectan mutuamente
y coevolucionan. La producción a partir de la aleatoriedad pura expone al oído a
estructuras internas intrincadas. Tras muchas horas de escucha de fragmentos musi-
cales producidos durante el prototipado de la herramienta, se ha constatado que el
oído musical es capaz de percibir la existencia de muchas capas de organización in-
terna no evidentes en la partitura. Esto es así incluso en genotipos muy complicados,
difíciles de discernir leyendo el código autogenerado.

❋ ❋ ❋

Volviendo a la hipótesis formulada al inicio de este trabajo, puede afirmarse como
conclusión global que sí es posible una representación procedimental significativa de la
música con un carácter dual, como datos comprimidos y en una forma legible y manejable
como un lenguaje de programación. Asimismo, se ha comprobado que la interrelación
entre ambos sistemas de representación abre el campo a nuevos métodos de creación
artística que potencian la sinergia entre la creatividad humana aumentada y las técnicas
actuales y futuras de aprendizaje automático.

Sirva esta investigación como una piedra más en el camino hacia la democratización
de nuevos medios de expresión que expandan la diversidad de sensibilidades artísticas.

212

A

A
p

p
e

n
d

i
x

GenoMus user interface

The main elements of the user interface of the current version at the time of writing
this thesis are shown below. Some figures are accompanied by a table that explains details
about the available actions. To operate this version of the core code, it is necessary to have
Max 8 and the bach package installed. The most current version of the Max patch can be
found at the URL https://genomus.dev/download.

A.1. Main patch

The main patch, shown in Figure 56, is divided into several panels. On the right are all
the subpatches from which to access windows dedicated to specialized functions, which
will be discussed further below. The six panels cover these functionalities:

Engine control: Starts the core code for music generation. It allows to setting certain time
limits in the search processes, to avoid bottlenecks that excessively slow down the
interaction.

Initial conditions: Allow changing the generation conditions that were studied in Sec-
tion 5.5. Changes are reflected in real-time.

Manipulation: Introduce conditions that affect the mutation of results and allow operating
on the current specimen by adding new voices, replacing branches, etc.

Playback: Control the final transformation options studied in Section 6.4. Also responsi-
ble for playback, format, and MIDI output ports.

Constraints: Introduce restrictions in the random search for specimens.

Load and save: Load and save individual specimens or complete generations.

213

https://genomus.dev/download

GenoMus user interface
A.1. Main patch

Figure 56: Main patch in presentation mode. On the left side are the subpatches containing modules for
various operations and data monitoring. Double-clicking accesses the secondary windows.

All the patches shown in the subsequent figures are in presentation mode, which is
the interface presented to the user. Max is a visual programming environment. To better
understand the type of work that has been done, Figure 57 shows the same main patch in
edition mode.

Figure 57: Main patch in edition mode. In editing mode, objects are arranged differently than in presentation
mode, which allows selecting which elements will be visible and their position.

214

GenoMus user interface
A.1. Main patch

Interface item Description

Engine control

start/stop Starts the execution of the Node.js core code.

new specimen Creates a brand new specimen.

resend current setup Resends the last options setup to the core code.

creation loop Creates brand new specimens cyclically
according to a time interval.

repeat until funding constraints Stops the creation loop if a specimen that
satisfies all the constraints is found.

max. interval per genotype Some complex genotypes may take a long time
to process. This value sets a limit to that time.

max. interval per search Sets a limit to the genotype creation routine in
the search for specimens that meet the given
constraints.

max. iterations per search Imposes a maximum on the genotypes
generated in a search cycle.

Initial conditions

extra parameters Determines the quantity of extra parameters in
an event.

specimen type Changes the output type of the genotype’s
trunk function. This allows for easier
exploration of certain specific processes.

eligibleFunctions Subpatch for controlling the eligible functions
(see Section A.3).

resend Resends the list of eligible functions to the core
code.

print eligible functions Prints the list of all eligible functions to the
Max Console.

depth threshold Determines the depth level of the decoded
genotype beyond which only identity
functions are used, thus limiting their growth
and avoiding infinite loops. In case of manual
editing of genotype, this value is updated
accordingly.

215

GenoMus user interface
A.1. Main patch

max. list cardinality Maximum number of elements that can be part
of a list-type function. In case of manual
editing of a genotype that exceeds this
threshold, this value is updated accordingly.

seed Changes the seed that controls the global
random processes to make them repeatable.
The button produces a new random seed
value.

germinal vector Subpatch for visual control of the germinal
vector (see Section A.3).

reeval initial conditions Resends all the initial conditions from the
interface to the core code.

Manipulation

reduce germinal vector Creates a new specimen by retrotranscribing
the current encoded genotype as a germinal
vector. This allows checking the deviation
between germinal vector and encoded
genotype; if the retrotranscription is correct,
the distance (displayed in the specimen’s
metadata) must be 0.

probability of mutations Controls how many of the leaves will be
changed when making a mutation. For a value
of 0.2, an average of 20% of the leaves will be
mutated.

mutations max. range Determines the maximum value change range
in a mutation on the normalized encoded
values. Thus, a value of 0.1 indicates that each
mutated leaf can change its value by ±0.1
(without going out of the range [0, 1]).

mutate specimen leaves values Produces a new version of the current
specimen by changing the leaf values
according to the two previous parameters.

grow horizontally Adds new music by juxtaposing it to the end
of the current specimen, increasing its overall
duration.

grow vertically Adds new voices to the current specimen,
increasing its polyphonic density.

216

GenoMus user interface
A.1. Main patch

new germinal vector Generates a new germinal vector with a
determined length.

mutate germinal vector Produces a new specimen by changing some
values of the current germinal vector according
to the specified probability and mutation
range.

replace branch type Randomly changes a branch of the specified
type in the functional tree of the genotype.

Playback

playback rate Adjustment factor for the tempo of the current
specimen.

MIDI play/stop Manual playback control of the current
phenotype.

min. quantized notevalue Minimum rhythmic value that determines the
timegrid to which all events will be adjusted.

steps per octave Tempered divisions of the octave. Non-integer
values produce non-standard divisions along
all octaves, which can be useful as specific
harmonizations.

autoplay Plays the music as soon as it has been
generated.

autostop Stops active events when a new sequence starts
playing. This is useful when working in live
coding mode, generating many fragments
quickly, both deactivated, to be able to create
dense textures, and activated, to avoid
unwanted overlapping.

infinite generation Asks the system to generate a new specimen
as soon as the current sequence has finished
playing. This works as an installation mode
operation, where there is music being
generated continuously.

217

GenoMus user interface
A.1. Main patch

play via Allows two modes of playback: the preferred
one is through the bach.roll viewer, which
gives visual feedback and allows taking
advantage of all its interactive editing options,
and through a standard MIDI file that is saved
and played immediately. This last possibility
can be rhythmically more precise, especially
with complex scores on not-very-powerful
machines.

MIDI output device Chooses the output port for MIDI data. This
allows to send the sequence in real-time to any
other musical software, as well as to control
external instruments, such as synthesizers,
Disklavier pianos, etc.

Constraints

germinal vectors max. length Limit to the number of values of the germinal
vector. Interesting for working with short
vectors that generate unpredictable internal
interactions.

mandatory function Includes that function compulsorily in the
functional tree of the genotype. Useful for
debugging and for creating specimens that
share the use of a specific procedure.

min. / max. events Minimum and maximum number of effective
events that the generated music must contain.

min. / max. polyphony Minimum and maximum number of voices
that the generated music must contain.

Load and Save

save initial conditions as Saves a specimen in its reduced version with a
name defined by the user.

load initial conditions Reads a specimen from the current population,
according to its position number in the
collection.

delete initial conditions Deletes the current specimen from the current
population.

save population Saves the current population.

218

GenoMus user interface
A.3. Communication with core code

save population as Saves the current population with a name
defined by the user.

save specimen as Saves the current specimen in its fully
rendered version with a name defined by the
user.

drop a specimen folder Allows dragging a folder to load all the
specimens it contains as a population.

Table 17: Description of the functionalities of the GenoMus main patch

A.2. Communication with core code

The subpatch in Figure 58 houses the core code of GenoMus inside a Node.js object. It
routes some messages received from the algorithm that synchronize and control various
actions of the UI. The code runs in the background without interfering with the real-time
operability of the Max patches that are running at that moment.

Figure 58: Communication subpatch with the GenoMus core code. A small viewer is included for JavaScript
code debugging.

219

GenoMus user interface
A.3. Control of initial conditions

A.3. Control of initial conditions

Some initial conditions require separate control. The subpatch in Figure 59 allows for
the selection of eligible functions for the automatic construction of genotypes.

Figure 60 shows the subpatch that displays a graphical representation of the germinal
vector. This graph is interactive, and sliding the bars alters the vector, producing real-time
changes in the generated specimen. It is thus easy to identify which values correspond to
the evaluable expression of the decoded genotype, making this window an unusual tool
for indirect programming.

Figure 59: Control of the set of eligible functions for genotype construction. Functions can be selected by
group or individually. Presets with specific configurations can be saved.

220

GenoMus user interface
A.4. Decoded genotype editor

Figure 60: Graphical display of the germinal vector. This plot is editable, and it is interesting to see the impact
that a small change has on the evaluable expression of the decoded genotype. Especially with short
vectors, the consequences of small changes have macro-scale effects. From the same window, new
vectors can be created, existing ones mutated, and the length of the vector determined, among
other functionalities.

A.4. Decoded genotype editor

A subpatch displays the functional expression of the decoded genotype. These pro-
grams can be enormously complex, with many levels of branching. The window allows for
text editing and formats it to make it more readable. The functional trees can be displayed
in a fully compact manner (Figure 61), in a semi-expanded form (Figure 62), keeping the
lists on a single line, or completely expanded (Figure 63), with one line per element. It
is also possible to expand or compact the closing parentheses. Expanding parentheses
requires more space but allows for better identification of the blocks of the subspecimens,
which is convenient for copying and pasting into new specimens.

Figure 61: Text editor of the decoded genotype functional expression with compressed formatting. This is
how the generated genotypes are stored. The auxiliary function formatDecGen rewrites it in the
various modes displayed by this viewer.

221

GenoMus user interface
A.4. Decoded genotype editor

Figure 62: Text editor of the decoded genotype functional expression with semiexpanded formatting

222

GenoMus user interface
A.4. Decoded genotype editor

Figure 63: Text editor of the decoded genotype functional expression with expanded formatting

223

GenoMus user interface
A.5. Specimen monitoring

A.5. Specimen monitoring

Several auxiliary windows monitor the encoded data of the current specimen. Figure 71

shows the encoded genotype and encoded phenotype alongside the conversion of the
phenotype to the format of the bach.roll object. The raw data of the rendered specimen
can be accessed in two ways: through a text viewer (Figure 65), which is more convenient
if an element needs to be copied, and a Max-specific viewer for dictionaries (Figure 66),
which is more comfortable for navigating through the different data blocks.

Figure 64: Viewers of encoded data and bach.roll converted data

Figure 65: Viewer for the complete data of the specimen as formatted text

224

GenoMus user interface
A.5. Specimen monitoring

Figure 66: Specimen viewer. This display can collapse and expand data blocks.

225

GenoMus user interface
A.6. Score viewers

A.6. Score viewers

The score viewer is another fundamental piece of the interface. The visual response
of the score is much faster than the auditory one, and in the selection process, it helps
to quickly discard results. There are two ways to access the generated scores. The sub-
patch collapsedScore, in Figures 67 and 68, unifies all voices into a single system. The
score subpatch, in Figure 69, displays each voice separately and adds some additional
functionalities, detailed in Table 18.

Figure 67: Collapsed score viewer. This example demonstrates the display and playback capabilities for mi-
crotonal scores. The score also shows where the end of the sound events is located, marked with
soundEnd, and where the internal rhythmic structure ends, at rhythmEnd.

Figure 68: Collapsed score viewer showing event extra parameters, event tags and a timegrid.

226

GenoMus user interface
A.6. Score viewers

Figure 69: Main score viewer, displaying each voice separately. Functionalities explained in Table 18.

227

GenoMus user interface
A.7. Score viewers

Interface item Description

MIDI output device Chooses the output port for MIDI data. This allows to
send the sequence in real time to any other musical
software, as well as to control external instruments, such
as synthesizers, Disklavier pianos, etc.

stop / play / play selection Activates and deactivates the playback of the entire score
or a part of it.

show extra parameters Displays the numerical values of the extra parameters of
the events, if they exist. These parameters are editable
from the score, by clicking on the note and pressing 4.

grid Shows or hides the timegrid.

zoom Horizontal zoom. The score is displayed in a single line,
without system breaks, so the zoom and the scrollbar are
what allow navigating through the musical text.

tone division Allows choosing among three types of pitch notation:
semitone, quarter-tone, and eighth-tone resolution.

voice separation Sets a vertical separation in the graphical display of
the voices.

show event tags Shows the tag of each event, which corresponds to the
one listed in the decoded phenotype data of the
specimen. Events that do not produce sound and those
that exactly replicate the parameters of another have
been eliminated in the phenotype itself, but these
discarded events retain their label, to allow for tracking.

export as MIDI Generates a MIDI file with the content of the score.

multitrack MIDI Allows choosing between exporting to a multi-channel
MIDI file, or with everything collapsed into a single
channel.

<message> midichannels Assigns channels for each voice in the score, which
applies both to real-time playback and to MIDI file
export, enabling the use of many synths or virtual
instruments simultaneously.

Table 18: Description of the functionalities of the score viewer. In addition to the functionalities described,
the bach.roll object integrates countless options for graphical manipulation and editing of the events.
This possible manual editing of these events is not retroactive to the corresponding specimen.

228

GenoMus user interface
A.7. Selection and evolution of specimens

A.7. Selection and evolution of specimens

Figure 70: Subpatch evolution to handle evolutionary processes

The subpatch that drives the process of selection, evaluation, and evolution of speci-
mens (Figure 70) is still a very simple prototype, but capable of handling the large number
of musical fragments that can be generated in a very short time. Figure 71 illustrates the
metadata viewer of the current state of the evolutionary processes, while Table 19 describes
the functionalities of this interface.

Figure 71: Subpatch sessionInfo to monitor metadata of generative sessions

229

GenoMus user interface
A.7. Selection and evolution of specimens

Interface item Description

new session Begins a new session of music generation, selection,
and evolution.

current generation Displays the number of the current generation. It is possible
to return to previous generations to create new branches of
evolution or recover specific specimens.

drop a session folder Loads a recorded session from a file. This includes all the
selected specimens from all the generations produced up to
that moment. The process of selection and evolution can
continue from any of the generations in that session.

export session Saves the current session in JSON format, with all the
selected specimens from all the generations produced.

user rating Whether entered numerically or using the slider, this is the
most important action for human-supervised selection. Each
time a specimen receives a rating > 0, it is selected and has
the chance to move to the next generation. A specimen
rating can be changed at any time. If its rating is reduced to
0, it is discarded and will not be used in the next generation.

selected specimen Displays the number of the current selected specimen. The
number is assigned descendingly based on its rating. For a
quick comparison, keyboard shortcuts are useful: the Q and
W keys move backward and forward in the selected
specimens, and the numeric keys 1 to 9 directly call the
specimen that occupies that ranking.

candidate specimen Displays the number of the current candidate specimen,
according to the order of production in the current
generation. For a quick comparison, keyboard shortcuts are
useful: the A and S keys move backward and forward in the
candidate specimens.

compare two last To facilitate comparison between candidates, the button (or
the shortcut C) alternately calls the last two specimens
displayed in the score viewer.

reset selected specimens Sets the rating of all specimens in the current generation to 0.

add comment Adds user comments to the metadata of the current
specimen. As many as desired can be added at any time.

delete comments Deletes all comments from the current specimen.

230

GenoMus user interface
A.8. Outputs

temperature Temperature has become a standard property to refer to how
much a generative AI is allowed to deviate from the models.
Here, this analogy is also used. The higher the temperature,
the more possible deviation from the selected specimens,
and the more new specimens are added to the pool of
candidates for the new generation.

specimens per generation Determines the number of specimens that will make up the
new generation.

new generation Produces a new generation according to the current
parameters.

rate generation When there is a predefined fitness function, such as a
phenotype to approach with metagramming, an
unsupervised assessment of all candidates takes place. The
bypasses to the right allow the process of creating new
generations and their automatic assessment to occur in a
loop, allowing the system to work autonomously.

<subpatch> evolutionTypes Accesses the configuration of multiple processes used to
generate each generation, and allows altering their weight in
the mix made according to the temperature.

Table 19: Functionalities of the evolution subpatch

A.8. Outputs

The outputs subpatch (Figure 72) exports scores as MIDI files and SVG files (produ-
cing vector graphics like those used in many of the figures in this text). It also exports
visualizations of the encoded data according to the criteria outlined in Section 5.3.

Figure 72: Subpatch outputs

231

B

A
p

p
e

n
d

i
x

Musical works

“ Tout le monde vous dira que je ne suis pas un musicien. C’est juste.
Dès le début de ma carrière, je me suis, de suite, classé parmi les
phonométrographes. Mes travaux sont de la pure phonométrique. Que
l’on prenne Le Fils des étoiles ou les Trois morceaux en forme de poire, En
habit de Cheval ou les Sarabandes, on perçoit qu’aucune idée musicale n’a
présidé à la création de ces oeuvres. C’est la pensée scientifique qui domine.
Du reste, j’ai plus de plaisir à mesurer un son que je n’en ai à l’entendre.
Le phonomètre à la main, je travaille joyeusement et sûrement.70

Erik Satie [132]

This appendix delves into the composition methods applied in the musical pieces crea-
ted at different stages of GenoMus development. They are presented here in chronological
order.

Although the initial works presented here were composed with simplified prototypes
of the current model, quite different in their implementation, I consider it very interesting
to gather them here to observe the initial motivations and how the different technical
solutions have evolved based on the artistic needs identified in each case.

The latest electroacoustic pieces in this section have indeed been created using versions
very similar to the final one presented in the main text of this thesis.

70Everyone will tell you that I am not a musician. That’s true. From the very beginning of my career, I imme-
diately classified myself among the phonometers. My work is purely phonometric. Whether one takes The
Son of the Stars or the Three Pieces in the Shape of a Pear, In Horse’s Attire or the Sarabands, it is evident that no
musical idea presided over the creation of these works. It is scientific thought that prevails. Furthermore,
I take more pleasure in measuring a sound than I do in hearing it. With the phonometer in hand, I work
joyfully and confidently. (Author’s translation)

232

Musical works
B.1. Threnody for Dimitris Christoulas

B.1. Threnody for Dimitris Christoulas

Instrumentation: flute (alt. piccolo), B-flat clarinet (alt. bass clarinet),
violoncello, piano and electronics (stereo)
The performers wear headphones and synchronize
with the tape using 4 different click tracks

Duration: 14 min
Premieres: November 4th, 2012 at Teatros del Canal, Madrid

November 15th, 2012 at Auditorio de Zaragoza
December 3rd, 2012 at Auditori de Barcelona
December 11th, 2012 at Sala Joaquín Turina de Sevilla

Performers: Taller Sonoro
Jesús Sánchez, flute
Camilo Irizo, clarinet
Mery Coronado, violoncello
Ignacio Torner, piano
Javier Campaña, electronics

Artistic concept

Dimitris Christoulas is the name of a retired Greek pharmacist who shot himself in the
head at Syntagma Square in Athens, in front of the Greek Parliament, on April 4, 2012.
He left a suicide note explaining that, due to the global economic crisis, the reduction
of his pension forced him to search for food in the trash, so he preferred to end his
life with dignity, calling for the rebellion of the youth. The conceptual framework of the
piece has this theme as an extramusical backdrop, although without programmatic or
illustrative intent. The reference to Dimitris Christoulas establishes a connection with
the emotional world and the historical context in which the composition task took place.
At some point, this event became linked to the work. Its influence on the piece and
the audience’s perception lies in a subjective realm and falls outside the scope of this
work. Threnody for Dimitris Christoulas was the first work exploring the techniques of
GenoMus’s metaprogramming. Its melodic materials are derived almost entirely from the
genotypes generated with the first operational prototype of the program.

233

Musical works
B.1. Threnody for Dimitris Christoulas

Reception

After the premiere, the critic Pablo J. Payón [150] published a review:

[...] Taller Sonoro cerró su propio festival con la propuesta más arriesgada de cuan-
tas se han visto en él. El conjunto sevillano ha cultivado siempre repertorios muy
cercanos a la experimentación, y ese terreno en el que el arte convencional se aproxima
al llamado arte sonoro, cuando no se cruza con él, es el que pisaron ayer.

[...] Para el final quedó la, en mi opinión, más ambiciosa obra del programa. Ori-
ginales del granadino José López-Montes (Guadix, 1977), esos Threnody están conce-
bidos como un virtuoso diálogo instrumental, con un trabajo refinadísimo sobre las
texturas y un empleo muy sutil de la electrónica.71

Methods

For this initial exploration of metaprogramming possibilities, a very simple first pro-
totype was devised that created recursive mathematical formulas. Recursion allows for
a wide variety of behaviors to be achieved from extremely simple formulas. A review of
the genotypes and phenotypes detailed in Figure 73 showcases the richness of possible
textures.

The notion that each element of a composition is deduced from the previous one is
very old, but in the case of recursion, its meaning is literal. The sequences thus generated
embody a certain sense of truth, akin to Cage, opposing manufactured beauty: they are
objects with an independent and unalterable existence, not bending to the composer’s
tastes.

Each Recursio starts from a motif of up to four notes, which constitute the initial con-
ditions for each recursion. The remaining notes are deduced from these initial pitches.
These recursive equations combine basic arithmetic and trigonometric operators, numer-
ical constants, and variables referencing the initial terms of each succession. The names
of the genotype functions are self-explanatory. In Tables 20 and 21, the recursions created
through metaprogramming have been translated into standard mathematical notation.

71[...] Taller Sonoro closed its own festival with the most daring proposal of all that have been seen in it.
The Sevillian ensemble has always cultivated repertoires very close to experimentation, and it was that
ground where conventional art approaches what are known as sound art, if it doesn’t outright intersect
with it, that they tread upon yesterday. [...] Saving the most ambitious work of the program for last, in my
opinion, was the work by José López-Montes (Guadix, 1977). These Threnody are conceived as a virtuoso
instrumental dialogue, with an extremely refined work on textures and a very subtle use of electronics.
(Author’s translation)

234

Musical works
B.1. Threnody for Dimitris Christoulas

The rules established for this composition process allowed total freedom for the manual
production and shaping of genotype-phenotype pairs. However, once these pairs were
selected, they required strict adherence, despite difficulties in tessitura and, in some cases,
rhythm.

Translating these abstract sequences of pitches into rhythmic, contrapuntal, or timbral
textures was guided primarily by allowing oneself to be carried toward the kind of mo-
tion that, in many cases, the sequence itself clearly suggested. Always aiming for the
instrumental arrangement to reveal its formal details in the most perceptible manner.

In some cases, a stretched rhythmic approach was chosen to emphasize the harmonic
aspects of the pitches; in others, a rapid and constant perpetuum mobile rhythm was em-
ployed to highlight much more prolonged structural details.

A genetic algorithm for electronics

For the production of the electroacoustic stereo tape, the following premises were
employed:

Sound synthesis was used as a testing ground for a prototype genetic algorithm in
MaxMSP, which was applied in manipulating a synthesizer programmed for this
purpose.

Electronic sounds served two functions: to enhance the sonority of the instruments
by coloring or expanding their timbre and to act as an additional virtual instrument,
engaging in counterpoint as another part. In many cases, the line between these two
functions is blurred.

All electronic sounds originate from a single virtual instrument acting as a filter
bank that operates on an audio source (usually noise or real sounds with numerous
impurities).

In the composition of Threnody for Dimitris Christoulas, a genetic algorithm pro-
grammed in JavaScript was utilized and integrated as part of the MaxMSP synthesizer de-
scribed above. Given that the behavior of this synthesizer depends on numerous variables,
whose interaction is also hard to predict, the decision was made to use a genetic algorithm
due to two compelling consequences it had for the composer:

235

Musical works
B.1. Threnody for Dimitris Christoulas

It facilitated the rapid creation of a wide range of timbres. This search system is
immune to the composer’s biases, who tends to manipulate the synthesizer controls
based on a preconceived idea of the type of sounds being sought.

It expedited the timbre modeling process, allowing for a global perspective without
concerning oneself with the detailed parameterization of each timbre.

The genetic algorithm generated a fertile interaction between the richness of initial
proposals (independent of the composer’s hand) and its ability to restrict and mutate the
selected results based on artistic decisions, which could be made without attending to the
technical details of the implementation.

Although this algorithm is not documented in this work, it served as a precursor to
the programming of GenoMus, as it reproduced, in a way, the same approach to assisted
creativity in the realm of timbre and sound synthesis.

As preparation for the electronic section, an electronic miniature titled eHayku (Study for
Threnody) was composed. This piece delved into exploring the timbral palette of the instru-
ment created. The timbre of the electroacoustic elements Threnody for Dimitris Christoulas
closely resembles this piece, available at https://vimeo.com/lopezmontes/ehayku.

236

https://vimeo.com/lopezmontes/ehayku

Musical works
B.1. Threnody for Dimitris Christoulas

Figure 73: Threnody for Dimitris Christoulas — all genotypes and graphical phenotypes

237

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio Recursive expression Initial values MIDI mapping

I–a xn = xn−1 + sin
2xn−1 + xn−3
xn−2 + 0.482

xn−3

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = −0.7349
x2 = 0.663
x3 = 0.4338

f (x) = 30x + 66

I–b
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = −0.3749
x2 = 0.0063
x3 = 0.2416

II xn = sin
⎛

⎜
⎜

⎝

0.422
xn−1 + xn−3

+
xn−2(xn−1 + 1)

xn−1
xn−2 ⋅ xn−3

⎞

⎟
⎟

⎠

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = −0.4249
x2 = −0.7214
x3 = −0.3279

f (x) = 30x + 66

III–a xn = −0.0336− xn−1 (xn−2 +
xn−4
xn−3

)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = 0.3205
x2 = 0.3341
x3 = 0.349
x4 = −0.1753

f (x) = 30x + 66

III–b

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = 0.0958
x2 = −0.4391
x3 = −0.3248
x4 = −0.7869

IV–a xn = tan(
xn−4
xn−2

+
xn−2 + xn−3
xn−2 + xn−4

)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.7776
x2 = −0.6955
x3 = −0.6598
x4 = −0.102

f (x) = 30x + 66

IV–b

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.3769
x2 = −0.1265
x3 = 0.0131
x4 = 0.0387

V xn = sin
xn−3
xn−1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = 0.1859
x2 = −0.1703
x3 = −0.2052

f (x) = 30x + 66

VII xn = tan((xn−2((xn−4 ⋅ xn−3)+ 0.219))− xn−1)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x1 = 0.4338
x2 = 0.663
x3 = 2

f (x) = 30x + 66

VIII xn = cos
xn−1
xn−4

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.4
x2 = −0.8
x3 = 0.657
x4 = 0.526

f (x) = 30x + 66

IX xn =
xn−1 + 6

xn−1
x1 = 0.4678 f (x) =

3x + 119
2

X xn = tan
xn−2 + xn−3

sin xn−1
xn−3

+ sin
xn−2
xn−3

⋅ sin
xn−4
xn−2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = 0.9293
x2 = −0.0314
x3 = −0.4355
x4 = −0.2143

f (x) = 30x + 66

XI xn = tan
0.145
xn−2
xn−1

{ x1 = 0.1962
x2 = 0.141

f (x) = 30x + 66

XII xn =
xn−3

sin xn−4
xn−4

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = 0.297
x2 = 0.8
x3 = 0.4281
x4 = 0.54

f (x) = 30x + 66

Table 20: Threnody for Dimitris Christoulas: formulae for Recursio I–a to XII

238

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio Recursive expression Initial values MIDI mapping

XIII–a xn = xn−2 − xn−4 − sin 0.033

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.4024
x2 = −0.6307
x3 = −0.6255
x4 = −0.3047

f (x) = 30x + 66

XIII–b

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.4419
x2 = 0.3535
x3 = −0.3537
x4 = −0.6362

XIII–c

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = 0.1802
x2 = −0.0433
x3 = −0.531
x4 = −0.2095

XIII–d1

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.198
x2 = 0.7603
x3 = −0.3265
x4 = −0.1742

XIII–d2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.19
x2 = −0.76
x3 = −0.28
x4 = −0.08

XIII–d3

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.22
x2 = −0.73
x3 = −0.248
x4 = −0.08

XIII–d4

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = −0.26
x2 = −0.73
x3 = −0.248
x4 = −0.08

Table 21: Threnody for Dimitris Christoulas: formulae for Recursio XIII–a to XII–d4

Below is the beginning of all the sections of the piece, relating genotypes, phenotypes,
and musical notation. The order of the sections in the piece slightly alters the numerical
order of the listed recursive processes. Additionally, the Recursio VI is not included because
it is a purely electronic interlude not generated using the general method.

239

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio I–a

(vAdd(x1,(vSin((vDiv((vAdd(x1,(vAdd(x3,x1)))),(vDiv((vAdd(x2,0.48196260851064854)),x3)))),(

vSin(x1,x2)))))

Figure 74: Recursio I–a — genotype, graphical phenotype and beginning of score

240

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio II

(vSin((vAdd((vDiv(0.4224016310636478,(vAdd(x1,x3)))),(vDiv((vAdd(x2,(vMult(x2,x1)))),(vDiv(x1

,(vMult(x3,x2)))))))),(vAdd((vDif((vDiv((vDiv(x2,x2)),(vSin(x1,x4)))),0.600562209309903))

,(vDiv(x3,(vDif(x4,(vAdd(x2,x4))))))))))

Figure 75: Recursio II — genotype, graphical phenotype and beginning of score

241

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio III–a

(vDif(-0.0335660162618765,(vMult(x1,(vAdd(x2,(vDiv(x4,x3))))))))

Figure 76: Recursio III–a — genotype, graphical phenotype and beginning of score

242

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio III–b

(vDif(-0.0335660162618765,(vMult(x1,(vAdd(x2,(vDiv(x4,x3))))))))

Figure 77: Recursio III–b — genotype, graphical phenotype and beginning of score

243

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio IV–a

(vTan((vAdd((vDiv(x4,x2)),(vDiv((vAdd(x2,x2)),(vAdd(x4,x2)))))),(vMult(x2,(vAdd(x4,x1))))))

Figure 78: Recursio IV–a — genotype, graphical phenotype and beginning of score

244

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio V

(vSin((vDiv(x3,x1)),x4))

Figure 79: Recursio V — genotype, graphical phenotype and beginning of score

245

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio IV–b

(vTan((vAdd((vDiv(x4,x2)),(vDiv((vAdd(x2,x3)),(vAdd(x4,x2)))))),(vMult(x2,(vAdd(x4,x1))))))

Figure 80: Recursio IV–b — genotype, graphical phenotype and beginning of score

246

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio VII

(vTan((vDif((vMult((vAdd((vMult(x4,x3)),-0.21903280447337825)),x2)),x1)),x4))

Figure 81: Recursio VII — genotype, graphical phenotype and beginning of score

247

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio VIII

(vCos((vDiv(x1,x4)),(vLog(x3,x4))))

Figure 82: Recursio VIII — genotype, graphical phenotype and beginning of score

248

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio IX

(vDiv((vAdd(x1,-6)),x1))

Figure 83: Recursio IX — genotype, graphical phenotype and beginning of score

249

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio X

(vAtan2((vAdd(x2,x3)),vAdd((vDiv((vSin(x1,x2)),x3)),vMult((vSin((vDiv(x2,x3)),(vLog(x2,x1))))

,(vSin((vDiv(x4,x2)),x4))))))))

Figure 84: Recursio X — genotype, graphical phenotype and beginning of score

250

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio I–b

(vAdd(x1,(vSin((vDiv((vAdd(x1,(vAdd(x3,x1)))),(vDiv((vAdd(x2,0.48196260851064854)),x3)))),(

vSin(x1,x2)))))

Figure 85: Recursio I–b — genotype, graphical phenotype and beginning of score

251

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio XI

(vTan((vDif((vAdd((vDiv((vDiv(0.12,0.83)),(vDiv(x2,x1)))),x1)),x1)),(vAdd(-0.02,(vDiv((vPow(

x1,(vLog(x1,x2)))),x2))))))

Figure 86: Recursio XI — genotype, graphical phenotype and excerpts from score

252

Musical works
B.1. Threnody for Dimitris Christoulas

Figure 87: Recursio XI — score continuation

253

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio XII

(vDiv(x3,(vDiv((vSin(x4,(vAdd(x2,x3)))),x4))))

Figure 88: Recursio XII — genotype, graphical phenotype and score

254

Musical works
B.1. Threnody for Dimitris Christoulas

Recursio XIII

(vDif((vDif(x2,x4)),(vSin(-0.033,x1))))

Figure 89: Recursio XIII — genotype and graphical phenotypes, XIII–a & b — score

255

Musical works
B.1. Threnody for Dimitris Christoulas

Figure 90: Recursio XIII–d2 & d3 — score

256

Musical works
B.1. Threnody for Dimitris Christoulas

Figure 91: Recursio XIII–d4 & d5 — score

257

Musical works
B.1. Threnody for Dimitris Christoulas

Figure 92: Recursio XIII–d6 — score

Figure 93: Max patch for study of multitempi with individual click tracks

258

Musical works
B.2. Ada + Babbage − Capricci

B.2. Ada + Babbage − Capricci

Instrumentation: violoncello and piano
Duration: 18 min
Premieres: March 15th, 2013 at Conservatorio Superior de Música

Rafael Orozco de Córdoba
Performers: Trino Zurita, violoncello

Óscar Martín, piano

Artistic concept

Ada + Babbage — Capricci is a duo for cello and piano consisting of 16 caprices
inspired by the names of Babbage and Ada72, pioneers of modern automated computing
in the mid-19th century. Charles Babbage was famous for his mechanical contrivances
capable of executing complex calculations, while Ada Lovelace conceived what would
later become programming languages and was often described as a virtuoso interpreter
of Babbage’s machines. The piece is not primarily a tribute but rather a reference to these
scientists through an analogy with the procedures of GenoMus: while Babbage’s role
involved conceiving systems of great potential, Ada was the one who understood and
formalized the procedures to extract brilliant results from these machines.73 The similarity
between the designer of a musical instrument and the virtuoso performer is direct. In
the case of GenoMus, the machine is the metalanguage and its possible manipulations,
while the composer’s decisions and skill are the decisive factors in achieving valuable
artistic results.

72The musical potential of these names was previously explored by Hofstadter [66], who plays with the initials
of Bach in dialogue with those of CHarles BAbbage.

73It’s no coincidence that she is considered the pioneer of programming, and there is a programming language
named after her.

259

Musical works
B.2. Ada + Babbage − Capricci

The names of Babbage and Ada are musicalized and used as constructive material for
the production of the employed genotypes. A series of specific functions were created
for the genotypes of this piece. Starting from the special functions scoNameADA and
scoNameBABBAGE, which respectively yield the motives A–D–A and B♭–A–B♭–B♭–A–G–E
in Germanic notation, a group of functions (identifiable by using their proper names as
well) were derived and integrated into the standard function library of GenoMus. The
genotypes of each caprice perform various transformations with these motivic cells, which
in many cases are easily identifiable in the musical transcription.

The criteria for musicalizing pitch sequences have been closely related to those em-
ployed previously in Threnody for Dimitris Christoulas. Ada + Babbage — Capricci is
composed with the first version of GenoMus that begins to integrate genotype functions
with manipulations and methods specific to musical composition, but still lacks the ability
to handle more than one parameter. Therefore, in musical notation, dynamics, and rhyth-
mic notation have been done manually, while the harmonic and melodic material has been
generated almost entirely by the metaprogramming mechanisms described.

260

Musical works
B.2. Ada + Babbage − Capricci

Figure 94: Ada + Babbage − Capricci — graphical phenotypes

261

Musical works
B.2. Ada + Babbage − Capricci

Capriccio I

// seed: 0.12267276066200561

scoTransp(

scoADA2voices(

scoPCGenPrim(),

300),

35)

262

Musical works
B.2. Ada + Babbage − Capricci

Figure 95: Capriccio I — genotype, graphical phenotype and beginning of score

263

Musical works
B.2. Ada + Babbage − Capricci

Capriccio II

// seed: 0.14049629543007258

scoTransp(

scoADA2voices(

scoPCGenPrim(),

300),

35)

Figure 96: Capriccio II — genotype, graphical phenotype and beginning of score

264

Musical works
B.2. Ada + Babbage − Capricci

Capriccio III

// seed: 0.2366373293347337

scoTranspMatrix(

scoRender(

scoNameADA()),

scoExcerptMulti(

scoInvert(

scoExcerpt(

scoRandFlo(

94,

25.99744415283203,

pyth(

55.94232177734375,

101)),

root(

randInt(

75,

54.761192321777344),

root(

94,

15)),

sin(

50.85978317260742))),

scoInter(

[0,0,0])))

265

Musical works
B.2. Ada + Babbage − Capricci

Figure 97: Capriccio III — genotype, graphical phenotype and beginning of score

266

Musical works
B.2. Ada + Babbage − Capricci

Capriccio IV

// seed: 0.06906914511016293

scoBABBAGE5voicesHarmonicGlobal(

scoNameBABBAGE(),

200)

Figure 98: Capriccio IV — genotype, graphical phenotype and beginning of score

267

Musical works
B.2. Ada + Babbage − Capricci

Capriccio V

// seed: 0.06906914511016293

scoBABBAGE5voicesHarmonicGlobal(

scoNameBABBAGE(),

200)

Figure 99: Capriccio V — genotype, graphical phenotype and beginning of score

268

Musical works
B.2. Ada + Babbage − Capricci

Capriccio VI

// seed: 0.5024332028236203

scoTranspMatrix(

scoExcerptMulti2(

scoTranspMatrix(

scoInvert(

scoPermut(

scoNameADAintervals())),

scoEnumInt(

20,

2)),

scoNameADA(),

scoNameADA()),

scoRender(

scoNameBABBAGEintervals()))

269

Musical works
B.2. Ada + Babbage − Capricci

Figure 100: Capriccio VI — genotype, graphical phenotype and beginning of score

270

Musical works
B.2. Ada + Babbage − Capricci

Capriccio VII

// seed: 0.6449608976441318

scoTransp(

scoBABBAGE4voicesHarmonic(

scoNameBABBAGE(),

40),

10)

Figure 101: Capriccio VII — genotype, graphical phenotype and beginning of score

271

Musical works
B.2. Ada + Babbage − Capricci

Capriccio VIII

// seed: 0.07204728925454051

scoBABBAGE5voicesHarmonic(

scoExcerpt(

scoExpand(

scoNameADA(),

floPrim()),

intPrim(),

ratio(

sin(

log(

floPrim(),

floPrim())),

floPrim())),

floPrim())

272

Musical works
B.2. Ada + Babbage − Capricci

Figure 102: Capriccio VIII — genotype, graphical phenotype and beginning of score

273

Musical works
B.2. Ada + Babbage − Capricci

Capriccio IX

// seed: 0.07755023860351185

scoMutate(

scoADA3voices(

scoRep(

scoPitchClass(

scoNameBABBAGE(),

scoPCGen(

intPrim())),

intPrim()),

cos(

intPrim())),

root(

absDif(

floPrim(),

floPrim()),

floPrim()),

randInt(

intPrim(),

floPrim()))

274

Musical works
B.2. Ada + Babbage − Capricci

Figure 103: Capriccio IX — genotype, graphical phenotype and beginning of score

275

Musical works
B.2. Ada + Babbage − Capricci

Capriccio X

// seed: 0.010562005465045599

scoBABBAGE5voicesHarmonicGlobal(

scoNameBABBAGE(),

200)

Figure 104: Capriccio X — genotype, graphical phenotype and beginning of score

276

Musical works
B.2. Ada + Babbage − Capricci

Cruciverba and Capriccio XI

// seed: 0.6912066419198322

scoExpandIter(

scoRandPrim(),

dif(

atan(

floPrim()),

floPrim()),

sqr(

intPrim()),

rFlo(

floPrim(),

sum(

intPrim(),

root(

intPrim(),

floPrim()))))

277

Musical works
B.2. Ada + Babbage − Capricci

Figure 105: Capriccio XI — genotype, graphical phenotype and beginning of score

278

Musical works
B.2. Ada + Babbage − Capricci

Capriccio XII

// seed: 0.30938694044888126

scoTranspMatrix(

scoExcerptMulti2(

scoTranspMatrix(

scoInvert(

scoPermut(

scoNameADAintervals())),

scoEnumInt(

46,

32)),

scoNameADA(),

scoNameADA()),

scoRender(

scoNameBABBAGEintervals()))

279

Musical works
B.2. Ada + Babbage − Capricci

Figure 106: Capriccio XII — genotype, graphical phenotype and beginning of score

280

Musical works
B.2. Ada + Babbage − Capricci

Capriccio XIII

// seed: 0.8853635125980808

scoMutate(

scoConcat(

scoConcat(

scoADA(

scoBABBAGE(

scoRand(

7,

60,

72),

50)),

scoRetrog(

scoInter(

[0,0,0,0,0]))),

scoTranspMatrix(

scoRandPrim(),

scoInter(

[0,0,0,1])))

281

Musical works
B.2. Ada + Babbage − Capricci

Figure 107: Capriccio XIII — genotype, graphical phenotype and beginning of score

282

Musical works
B.2. Ada + Babbage − Capricci

Capriccio XIV

// seed: 0.6449608976441318

scoBABBAGE5voicesHarmonicGlobal(

scoTransp(

scoNameBABBAGE(),

-12),

40)

Figure 108: Capriccio XIV — genotype, graphical phenotype and beginning of score

283

Musical works
B.2. Ada + Babbage − Capricci

Capriccio XV

// seed: 0.7370028217611009

scoRender(

scoExpandIter(

scoNameBABBAGE(),

1,

6,

60))

284

Musical works
B.2. Ada + Babbage − Capricci

Figure 109: Capriccio XV — genotype, graphical phenotype and beginning of score

285

Musical works
B.2. Ada + Babbage − Capricci

Capriccio XVI

// seed: 0.7370028217611009

scoBABBAGE5voicesHarmonic(

scoNameADA(),

40)

Figure 110: Capriccio XVI — genotype, graphical phenotype and beginning of score

286

Musical works
B.3. Microcontrapunctus

B.3. Microcontrapunctus

Instrumentation: 24-channels tape
Duration: 7 min
Premiere: May 6th, 2016 at Istituto Superiore de Studi Musicali

Pietro Mascagni in Livorno (Italy)
URL: Vimeo:

https://vimeo.com/lopezmontes/microcontrapunctus

Artistic concept

Microcontrapunctus was composed to be premiered at the Istituto Superiore de Studi
Musicali Pietro Mascagni in Livorno (Italy), within a large space featuring a fixed ins-
tallation of 24 independent speakers placed on various floors and heights, distributed
throughout the volume of the auditorium, as shown in Figure 111. A setup like this
suggested the possibility of composing a piece that aimed to highlight the acoustic charac-
teristics specific to each region of the interior space. Thus, the piece was initially conceived
as a bombardment of brief purely synthetic sound impulses with a sharp attack and rich
harmonic content, emitted following various spatial patterns and trajectories. One of the
objectives was for the piece to yield diverse results depending on each acoustic space
and technical configuration. This approach is, moreover, quite common in multichannel
acousmatic work.74

74De Benedictis [39] has edited several compilations of articles documenting different approaches to acous-
matic composition for this unique space.

287

https://vimeo.com/lopezmontes/microcontrapunctus

Musical works
B.3. Microcontrapunctus

Figure 111: Speakers setup for Microcontrapunctus at Istituto Superiore de Studi Musicali Pietro Mascagni
in Livorno (Italia). The numbers in blue represent the channel assignment in the multitrack
audio of the piece. The arrows indicate the path of the sound as it moves from audio channels
1 to 24, starting from speaker 14 and ending at 22, on the second floor of the hall, according to
the hall internal channels assignment. The height in centimeters at which each speaker is located
is indicated in parentheses.

Methods

The piece was produced to be projected using an ideal quantity of 24 speakers used as
individual instruments. Consequently, each sound event is assigned a single channel, with
each speaker treated as an instrument in itself, possessing its own acoustic qualities and
its particular score. Among the many possible approaches to spatialization, I opted for

288

Musical works
B.3. Microcontrapunctus

a treatment of sound diffusion sometimes described as orchestra of speakers,75 particularly
suitable when there are so many points of emission.

All other technical and artistic decisions derive from this initial concept focused on
echolocation and the resonances of the acoustic space as primary parameters of interest.
The first step was to build a sound synthesis engine suitable for harnessing the possibilities
of metaprogramming that were to be explored.

I first present the Csound instrument employed as the sole synthesizer throughout the
piece, illustrating how each of its components integrates. Later, I will detail how the scores
were generated, starting from a small function library that constructed the genotypes.

Given that the purpose of the piece was to test the metaprogramming capability in
achieving a varied and vibrant palette of timbral colors through the combination of swarms
of these small impulses, the search space was largely limited in two fundamental aspects:

Timbre: after several previous experiments programming Csound instruments aimed
at producing small sound grains, the sound synthesis source was reduced to a single,
straightforward virtual instrument capable of considerable timbral flexibility.

Compositional procedures: the function library used to construct the scores was
assembled with a minimal number of generic methods, emphasizing the possibilities
of recombination and recursion of these simple methods rather than relying on
complex procedures.

The type of synthesis used in Microcontrapunctus is closely related to granular synthe-
sis. The brief sound impulses used as typical events have durations ranging from less than
a millisecond to about half a second.76 To focus the work on the variation capacity of the
metaprogramming algorithm, all sounds in the piece originate, without exception, from a
single virtual instrument.

Csound allows for precise control of sound synthesis. However, a drawback often arises:
to achieve synthetically interesting sounds, a large volume of data must be managed within
the scores executed by these instruments. This obstacle is what I aim to overcome with the
computational power of metaprogramming.

75Arranz [11] has conducted an extensive study on these paradigms of real and virtual sound spaces.
76A seminal text to learn more about the microtemporal scale of sound in electroacoustic composition is

Microsound by Roads. [122]

289

Musical works
B.3. Microcontrapunctus

Listing 97 displays the only Csound instrument for Microcontrapunctus, which requires
thirteen additional parameters beyond those indicating the instrument number.77

1 instr 1

2

3 ifreq = p4 ; fundamental frequency for the buzz generator (Hz)

4 imodfreq = p5 ; modulation frequency for ring modulation (Hz)

5 iringpresence = p6 ; amount of ring modulation in the final mix (from 0.0 to 1.0)

6 iphasestart = p7 ; starting point of phase for amplitude envelope (1 = 2pi radians)

7 iphaseend = p8 ; ending point of phase for amplitude envelope

8 ipow = p9 *2 + 1 ; power for envelope modulation (converted to an odd number)

9 inoisepow = p10 * 2 + 1 ; power for noise envelope modulation for attack

10 iharmonicsstart = p11 ; total harmonics for the buzz opcode at the beginning of the event

11 iharmonicsend = p12 + 1 ; total harmonics at the end of the event

12 iseed = p13 ; initialization for random value generation

13 ichannel = floor(p14) ; audio channel assigned to the sound event

14

15 ; buzz synth

16 kharmonics line iharmonicsstart, p3, iharmonicsend

17 ifn = 1

18 aenv line $M_PI * 2 * iphasestart, p3, $M_PI * 2 * iphaseend

19 asin sin aenv

20 asin pow asin, ipow

21 abuzz buzz asin, ifreq, kharmonics, ifn

22 ; attack noise

23 arand rand abuzz, iseed

24 arandenv line 1, p3, 0.0001

25 arandenv pow arandenv, inoisepow

26 aoscilenv = 1 - arandenv

27 ; attack and amplitude envelopes

28 amainsignal = (abuzz * aoscilenv + arand * arandenv)

29 ; additional ring modulation

30 amod poscil 1, imodfreq

31 aring = (abuzz * aoscilenv*amod + arand * arandenv * amod)

32 ; final mix and output channel assignment

33 amix = amainsignal * (1 - iringpresence) + aring * iringpresence

34 outrg ichannel, amix

35

36 endin

Listing 97: Microcontrapunctus — Csound instrument to synthesize microsounds

77In the syntax of Csound scores, the first three parameters are fixed: p1 is the instrument index (here always
i1), p2 is the start time in seconds, and p3 is the duration of each event. The parameters required from p4
onwards are defined by the user in the instrument’s code.

290

Musical works
B.3. Microcontrapunctus

The instrument combines classic additive synthesis with ring modulation and the use
of white noise. At the core of the instrument, in line 20, we find the additive synthesis
generator buzz78. It groups a set of harmonic partials by summing sinusoidal waves, based
on four parameters:

asin — amplitude envelope.

ifreqenvelope — fundamental frequency of the partials set.

kharmonics — number of harmonics added from the fundamental frequency.

ifn — index of the function used for synthesis (in this case, a normal sine function).

78Documentation on buzz can be found at http://www.csounds.com/manual/html/buzz.html. For a deeper
understanding of the implementation of this type of synthesis, see the article by Stilson and Smith. [145]

291

http://www.csounds.com/manual/html/buzz.html

Musical works
B.3. Microcontrapunctus

Figure 112: Basic sound created with the Csound instrument for Microcontrapunctus. The buzz opcode
acts as a dynamic battery of simple oscillators. Therefore, if the kharmonics parameter ranges
from 1 to 10, the first ten partials of a harmonic series are successively added. In the upper part
of Figure 112, the audio signal generated in blue is modulated with the asin amplitude envelope,
also created using the sine function and marked with the red line. The spectral analysis in the
lower part shows the successive entry of the ten partials starting from the 500 Hz fundamental.
The top of the figures contains the Csound score that has synthesized it.

The signal produced by buzz is modulated by several additional signals that control the
attack timbre, the overall envelope, and a ring modulation with an additional sinusoidal
wave that dynamically enriches the timbre with series of inharmonics. By modifying this
initial example, I will separately demonstrate the effect that each of these modulations has
on the signal.

292

Musical works
B.3. Microcontrapunctus

The importance of the attack in the identification and character of a sound event is
well known. In notes as brief as those in this work, the attack time can be extremely short.
The asin signal is controlled by two parameters that operate on the phase of the sine
function that generates it, normalized with values from 0 to 1. With a phase start of 0, as
in the initial example, the signal gradually grows. A value of 0.25 creates a sharp attack.
Figure 113 shows three variations of the previous note.

Figure 113: Modifications of the attack. The sound of the previous figure with half the duration (0.05 s)
and with increasingly rough attack envelopes. The spectral analysis shows how, in addition to
multiples of 500 Hz, at the beginning of each note, there is progressively more energy across all
frequencies.

The instrument design allows the asin envelope to complete several cycles of the sine
function. Figure 114 shows that, in practice, this can function as a tremolo effect with a
low-frequency oscillator (LFO), or it can even produce a classic ring modulation, whose
effects are well-known as a resource to enrich the spectral content.

293

Musical works
B.3. Microcontrapunctus

Figure 114: Amplitude envelopes creating two variations of the initial sound: the first with an amplitude
envelope (in red) acting as an LFO, and the second as ring modulation, adding inharmonic
partials to the harmonic series of 500 Hz.

A third element that defines this envelope is the constant ipow, which is the exponent
of a power calculated on the values of asin. The higher this value, the more angular the
envelope becomes, and the more abrupt the attack and overall amplitude evolution, as can
be seen in Figure 115.

294

Musical works
B.3. Microcontrapunctus

Figure 115: Application of different exponents to the envelope curve of the note in Figure 112. Increasing
exponents gradually transform the note into an impulse; the harmonic partials become less
perceptible, revealing the spectrogram clearly.

As a complementary component to the attack, a new layer of noise is added, multiplied
by the main signal abuzz, illustrated in Figure 116. This initial instability of the signal is
a common characteristic in many physical sounds; at times, it lends a synthetic sound a
veneer of credibility and analogy to recognizable real sounds.

295

Musical works
B.3. Microcontrapunctus

Figure 116: Addition of a modulating noise source. The degree of affectation to the initial layer is modulated
by the signal arandenv, delineated in red, which in turn depends on another exponent in the
variable inoisepow controlled by the parameter p10.

Figure 117 represents the final layer, which is a new ring modulation added from the
simple oscillation of a single harmonic. The constant iringpresence determines how much
weight this modulation has on the final signal.

296

Musical works
B.3. Microcontrapunctus

Figure 117: Additional ring modulation. Application of a modulating signal of 7217 Hz to the sound of the
initial example. In these two variations, the presence of the ring modulation is 2% and 98%,
respectively.

For clarity, the previous examples display each component separately in notes of a rela-
tively long duration compared to the events used in Microcontrapunctus. Figure 118 shows
a note that integrates all the previous modulations with a duration of 0.02 seconds. The
spectral analysis still displays traces of harmonic content that are no longer perceptible as
pitches but rather as the tonal quality of a sound particle barely longer than an impulse.

297

Musical works
B.3. Microcontrapunctus

Figure 118: Single sound grain with different modulations. The spectral analysis cannot be very precise due
to the brevity of the sound particle. This type of very brief event is predominant in the overall
texture of the composition.

Finally, to get even closer to the type of sound character on which the piece is based,
Figure 119 displays a group of notes that, starting from the previous event, gradually
modifies all parameters, including the last two: the penultimate one, iseed, which is an
initializer for the random values that prevents the repetition of pseudo-random series
generating white noise, and ichannel, which indicates the channel to which each event is
assigned.

298

Musical works
B.3. Microcontrapunctus

Figure 119: Csound score and sequence of various microsounds. This synthesis example uses only four
channels in p14 to determine the output bus. For the final composition, it takes values from
1 to 24. The spectral analysis combines all channels into the same spectrogram. The last sounds
are so brief that they are only visible in the spectrogram. In the Csound score, the symbol <
creates a linear transition between the upper and lower values in the column.

299

Musical works
B.3. Microcontrapunctus

Function name Output type Description

combineArrays score Returns a score that combines 13 independent arrays
(one for each parameter of the Csound instrument). As
the arrays it takes can have different sizes, the number
of events in the score adjusts to the shortest array.

concatScores score Creates a group of events by concatenating two scores
given as parameters.

gestureCurve parameters list Constructs a curve with four intermediate inflection
points, and according to an exponential value for the
development of each of the five segments of the curve.

jitter parameters list Applies stochastic deformation to each of the values in
an input sequence, according to a parameter indicating
the range of that deformation.

jitterScore score Applies stochastic deformation to a score in the same
way that jitter did to an array.

loopArray parameters list Returns a sequence formed by repeating the input
sequence a number of times.

permutArray parameters list Takes a sequence and performs permutations on the
order of its values.

permutScore score Analogous to the permutArray function, this function
does the same with an event sequence, applying
stochastic permutations to each of the arrays contained
in a score.

remapArray parameters list Takes a series of values and remaps them according to a
new minimum and maximum, and an exponent that
applies an exponential curve.

steps parameters list Builds a linear progression in several steps from an
initial value to a final one.

stepsScore score Constructs an event sequence by generating linear
arrays for each parameter.

Table 22: Microcontrapunctus’ genotype functions. Since this project was a proof of concept, a very limited
number of functions were implemented for genotype construction. However, the musical results
were rich enough to construct the composition.

300

Musical works
B.3. Microcontrapunctus

Figure 120: Data generated by Microcontrapunctus’ genotype functions of type list

301

Musical works
B.3. Microcontrapunctus

The amount of text required to code just one second of sound is considerable. This
is where metaprogramming with GenoMus comes into play as a tool to create symbolic
metalevels capable of generating thousands of these small events from a comprehensive
and descriptive high-level grammar. In Table 22 the genotype functions that this version
of GenoMus handled for building the phenotypes from which the entirety of the sound
synthesis of the piece was produced.

In this experiment, there are only functions of two types based on their output: those
that generate or transform lists of parameters, and those that form scores that will even-
tually converted into sequences of events in Csound. Figure 120 illustrates the operations
performed by the functions in the first group.

In this project, a primitive version of the encoded genotype is introduced, albeit lacking
many features of the current model. Below is an example that generates a small sequence
of sounds. Figure 121 already displays a reduced example of the complete flow from the
generation of a randomly encoded genotype to the final synthesized sound.

302

Musical works
B.3. Microcontrapunctus

Figure 121: Data flow from the encoded genotype to the microsound sequence

303

Musical works
B.3. Microcontrapunctus

Finally, I present a genotype of the type that generated the sounds integrated into the
composition. In Listing 98, the limit of branching depth of the functional tree is seven. The
corresponding audio sequence is displayed in Figure 122.

concatScores(
concatScores(

stepsScore(
0.6540395879606171, 0.9728245717009265, [... 27 more items]),

stepsScore(
0.22239203910797967, 0.14671288015170747, [... 27 more items])),

concatScores(
permutScore(

jitterScore(
permutScore(

stepsScore(
0.09403539164890773, 0.9615761914053887, [... 27 more items]),

0.9228131948278162),

0.05852691014936773),

0.9792464395755205),

permutScore(
combineArrays(

remapArray(
remapArray(

steps(
0.6898430470723919, 0.3178026718069705, 0.7250774804970264),

0.2856020633365356, 0.18892184442333881, 0.8067271131987117),

0.45361192313536014, 0.2745975219583152, 0.0086719702346012),

steps(
0.6999633672393484, 0.7529553293430471, 0.12130300364743696),

gestureCurve(
0.30333519779989215, 0.8737315017891157, [... 14 more items]),

permutArray(
permutArray(

gestureCurve(
0.40850730149379844, 0.8736568430313747, [... 14 more items]),

0.7519616413317407),

0.849375264041261),

remapArray(
permutArray(

remapArray(
[0.5094212213500061,0.3926701689407963,0.2701658138653338,0.6013940194469194],

0.828738054337547, 0.9916017320681684, 0.7547844127637742),

0.08418369951459648),

0.6534955465804004, 0.01579824265424623, 0.28027864315430007),

permutArray(
permutArray(

loopArray(
[0.45008436614797165,0.464658651175221,0.43841162663198097,0.9379684800699739],

0.8667414484888062),

0.9513909506410053),

0.6695437749750031),

gestureCurve(
0.9485584438515572, 0.8477380481162651, [... 14 more items]),

steps(
0.48068848956642485, 0.4065502846653838, 0.21034266920832467),

steps(
0.7684912533395216, 0.3961615424042998, 0.006148885875535415),

remapArray(
steps(

0.6136431169684109, 0.21682431647081424, 0.5478260434514265),

0.09961457771972615, 0.15841868629550226, 0.04075662172665495),

steps(
0.4871680119123927, 0.02402244477127835, 0.8246469425787919),

remapArray(
jitter(

remapArray(
[0.6522292937294387,0.05297404161504882,0.7504096204406197,0.8058722851477045],

0.6647645735811639, 0.9620394819433622, 0.16542848329930093),

0.0414964833636281),

0.14268542896184022, 0.0724526494387625, 0.1411451247506038),

304

Musical works
B.3. Microcontrapunctus

remapArray(
loopArray(

remapArray(
[0.9805650058308085,0.6974184170011729,0.32846390366276146,0.8657352742243655],

0.3963293030160825, 0.13961838950996475, 0.8694078855826461),

0.2938724629924293),

0.257491421879254, 0.2356517065542676, 0.48210572692632436)),

0.6333066620908956)))

Listing 98: Decoded genotype for synthesis of microsounds

Figure 122: Example of actual fragment of the final composition

Next, I display the graphical representation of various passages from the composition,
which was assembled from many fragments of diverse durations generated with GenoMus
with minimal modification, aside from material selection and arrangement. In Figures 123

to 138, the waveforms of the 24 audio channels appear first, allowing a clear visualization
of shifts in multichannel spatialization. Below are the combined spectra of all signals, with
a vertical range capped at 20 kHz. The entire piece can be listened to (and visualized) at
https://vimeo.com/lopezmontes/microcontrapunctus.

305

https://vimeo.com/lopezmontes/microcontrapunctus

Musical works
B.3. Microcontrapunctus

Figure 123: Microcontrapunctus — waveforms and spectrogram 0∶24.5 - 0∶27.0

306

Musical works
B.3. Microcontrapunctus

Figure 124: Microcontrapunctus — waveforms and spectrogram 0∶55.3 - 0∶58.1

307

Musical works
B.3. Microcontrapunctus

Figure 125: Microcontrapunctus — waveforms and spectrogram 1∶07.1 - 1∶09.9

308

Musical works
B.3. Microcontrapunctus

Figure 126: Microcontrapunctus — waveforms and spectrogram 1∶26.3 - 1∶29.1

309

Musical works
B.3. Microcontrapunctus

Figure 127: Microcontrapunctus — waveforms and spectrogram 1∶32.6 - 1∶35.9

310

Musical works
B.3. Microcontrapunctus

Figure 128: Microcontrapunctus — waveforms and spectrogram 1∶43.8 - 1∶47.0

311

Musical works
B.3. Microcontrapunctus

Figure 129: Microcontrapunctus — waveforms and spectrogram 2∶12.7 - 2∶16.0

312

Musical works
B.3. Microcontrapunctus

Figure 130: Microcontrapunctus — waveforms and spectrogram 2∶30.0 - 2∶32.8

313

Musical works
B.3. Microcontrapunctus

Figure 131: Microcontrapunctus — waveforms and spectrogram 3∶06.1 - 3∶09.3

314

Musical works
B.3. Microcontrapunctus

Figure 132: Microcontrapunctus — waveforms and spectrogram 3∶26.8 - 3∶30.0

315

Musical works
B.3. Microcontrapunctus

Figure 133: Microcontrapunctus — waveforms and spectrogram 3∶30.4 - 3∶33.1

316

Musical works
B.3. Microcontrapunctus

Figure 134: Microcontrapunctus — waveforms and spectrogram 4∶19.7 - 4∶22.4

317

Musical works
B.3. Microcontrapunctus

Figure 135: Microcontrapunctus — waveforms and spectrogram 4∶29.1 - 4∶31.3

318

Musical works
B.3. Microcontrapunctus

Figure 136: Microcontrapunctus — waveforms and spectrogram 5∶36.0 - 5∶38.7

319

Musical works
B.3. Microcontrapunctus

Figure 137: Microcontrapunctus — waveforms and spectrogram 6∶11.3 - 6∶14.0

320

Musical works
B.4. Microcontrapunctus

Figure 138: Microcontrapunctus — waveforms and spectrogram 7∶13.0 - 7∶15.8

321

Musical works
B.4. Seven Places

B.4. Seven Places

Instrumentation: violin, tape (stereo) and optional video
Duration: 7 min
Premiere: May 8th, 2016 at XII Mostra Sonora de Sueca, Valencia

Performers: Carmen Antequera, violin
Gregorio Jiménez, video and sound

URL: Vimeo:
https://vimeo.com/lopezmontes/sevenplaces

Artistic concept

Seven Places closes a cycle of pieces derived from a collaboration with the violist, per-
former, and visual artist Charlotte Hug. During the preliminary work for the composition
of Badlands to the Skies (2009), numerous multimedia materials were produced from Hug’s
analog visual and sonic raw materials, subsequently explored using various digital tech-
niques.

Seven Places is characterized by both condensation and density of textures. It seeks the
integration of the violin and electronics in a balance where each part maintains a clear
idiomatic identity. The violin writing combines strong microtonality with a rhetoric that
does not relinquish the instrument’s inherent expressiveness.

Similar to Badlands to the Skies, the inspiration continues to stem from the fascination
and abstraction of the desert landscape of gullies in the southeastern region of Andalusia
where the composer resides.

Each microsection refers to a specific geographical point, identified by its coordinates
and locatable using a QR code reader incorporated in the score, as seen in Figure 139,
which displays the first page of the piece.

322

https://vimeo.com/lopezmontes/sevenplaces

Musical works
B.4. Seven Places

Figure 139: Seven Places — score’s first page

323

Musical works
B.4. Seven Places

Methods

The use of GenoMus in this piece is limited to the generation of electronic sound in
some parts, and becomes particularly evident, especially in section 6, partially reproduced
in Figures 140 and 141. The textures of the electronics, characterized by abrasive sounds
reminiscent of stony and rigid materials, have been synthesized in real-time from scores
designed for electronic manipulation.

Figure 140: Seven Places — video script, score and tape spectrogram, bars 59 to 69.

324

Musical works
B.4. Seven Places

The figures display in parallel parts of the video accompanying the tape, the score, and
a spectrogram, where these changes in rhythmic and timbral patterns can be observed.79

Figure 141: Seven Places — video script, score and tape spectrogram, bars 59 to 69. The spectrogram
represents only the stereo tape accompanying the violin, displaying frequencies up to 20 kHz.

79It exists a Master’s Thesis by Martín Gutiérrez [94] that includes an analysis conducting a detailed study of
the multimedia aspects of the work.

325

Musical works
B.5. Choral Riffs from Coral Reefs

B.5. Choral Riffs from Coral Reefs

Instrumentation: stereo tape
Duration: 8 min
Premiere: December 5th, 2017 — La Madraza (Granada)

XXIV Punto de encuentro de la Asociación de Música
Electroacústica de España (AMEE)

URL: Vimeo:
https://vimeo.com/lopezmontes/choralriffs

Artistic concept and methods

For a concert themed around coral reefs, the piece explored the possibilities of generat-
ing real-time audio with sequences of extremely high event density. These intricate scores
were sent to virtual percussion and string instruments based on physical modeling. By
pushing the parameters of these instruments’ virtual physics to extremes, electronic-like
timbres and textures were achieved, yet they maintained a high degree of believability as
imaginary analog acoustic objects.

The musical interest lies in applying compositional processes to very small time scales
to bring the use of the VST closer to granular synthesis. Figure 142 illustrates the diversity
of spectral and temporal textures achieved with this method.

326

https://vimeo.com/lopezmontes/choralriffs

Musical works
B.5. Choral Riffs from Coral Reefs

Figure 142: Spectrograms of excerpts from Choral Riffs from Coral Reefs. Each image represents a slice of
3.5 seconds, and frequencies up to 20 kHz. At this time scale, the rhythmic textures generated
by GenoMus can be well discerned.

327

Musical works
B.6. Juno

B.6. Juno

Subtitle: Fanfare to Celebrate the Arrival of the Juno Spacecraft at Jupiter
Instrumentation: brass septet and optional tape

Duration: 5 min
Comission: Bóreas Ventus
Release: October, 2019

Performers: Bóreas Ventus
Alberto Castillo, piccolo trumpet
Enrique Morillas, trumpet
Antonio M. García, trumpet
Manuel Herrera, horn
Álvaro del Pino, trombone
Antonio J. Delgado, euphonium
Alberto Vallejo, tuba
Pablo Rojas, conductor

URLs: Spotify:
https://open.spotify.com/intl-es/track/0j00et9YcFq8GOvl3LF3cE

Heuristics for harmony and instrumentation

GenoMus’s role in this composition was limited to a very specific function: searching
for harmonies that meet certain requirements:

Suitability to the registers of the seven instruments

Overall range

Largest and smallest allowed internal intervals

Global lower and upper limits

Degree of diatonicity

Presence of repeated notes

Relationships with the preceding chord

Link with pitches of preceding chords

328

https://open.spotify.com/intl-es/track/0j00et9YcFq8GOvl3LF3cE

Musical works
B.6. Juno

The primary goal was therefore to test the incorporation of constraint-based search
algorithms into the general architecture of GenoMus, similar to those used in OpenMusic
and PWGL. This procedure quickly produced many harmonic progressions that could be
easily adapted to the score. Figures 143 and 144 display fragments where these structures
can be clearly seen, especially the use of common notes between chords.

Figure 143: Juno — bars 27 to 47 (transposing score)

329

Musical works
B.7. Juno

Figure 144: Juno — bars 78 to 93 (transposing score)

On the other hand, the GenoMus prototype for this composition is the first to use, in
a simplified version, the subspecimen model described in Section 3.3 as a key element of
the functional metaprogramming.

330

Musical works
B.7. Openings for FACBA Podcasts

B.7. Openings for FACBA Podcasts

Instrumentation: synthesizers and virtual instruments
Total duration: 3 min
Comission: University of Granada — Faculty of Fine Arts — Podcast FACBA
Website: https://facba.info/

Season 2020: FACBA’20 - Seminario El saber oscuro: ritos, senderos y trán-
sitos del conocimiento artístico— Ep. 0 to 13

Release: May, 2020
URLs: Soundcloud:

https://soundcloud.com/webmaster-bbaa/episodio-creditos-seminar

io-el-saber-oscuro

Spotify:
https://open.spotify.com/episode/2GAGDAdB1frEAuEAoPECoh

Apple Podcast:
https://podcasts.apple.com/es/podcast/episodio-cr%C3%A9ditos-s

eminario-el-saber-oscuro/id1513608842?i=1000475196881

Season 2021: FACBA’21 - Seminario La variación infinita— Ep. 14 to 28
Release: Jun, 2021
URLs: Soundcloud:

https://soundcloud.com/webmaster-bbaa/episodio-14-equipo-comis

arial-facba-21-marisa-mancilla-regina-perez-y-rosario-velasco

Spotify:
https://open.spotify.com/episode/3eTR7fHFmVYPc4vqlcipQV

Apple Podcast:
https://podcasts.apple.com/es/podcast/radio-bellas-artes-grana

da/id1513608842

Season 2022: FACBA’22 - Seminario Contrarritmo, reescalas y distorsiones
de nuestro tiempo acelerado— Ep. 29 to 37

Release: July, 2022
URLs: Soundcloud:

https://soundcloud.com/webmaster-bbaa/sets/seminario-facba-22

Spotify:
https://open.spotify.com/episode/4EnTFFAEmGrVkATz91tYkb

Apple Podcast:
https://podcasts.apple.com/es/podcast/episodio-29-equipo-comis

arial-marisa-mancilla-y-rosario/id1513608842?i=1000569252673

331

https://facba.info/
https://soundcloud.com/webmaster-bbaa/episodio-creditos-seminario-el-saber-oscuro
https://soundcloud.com/webmaster-bbaa/episodio-creditos-seminario-el-saber-oscuro
https://open.spotify.com/episode/2GAGDAdB1frEAuEAoPECoh
https://podcasts.apple.com/es/podcast/episodio-cr%C3%A9ditos-seminario-el-saber-oscuro/id1513608842?i=1000475196881
https://podcasts.apple.com/es/podcast/episodio-cr%C3%A9ditos-seminario-el-saber-oscuro/id1513608842?i=1000475196881
https://soundcloud.com/webmaster-bbaa/episodio-14-equipo-comisarial-facba-21-marisa-mancilla-regina-perez-y-rosario-velasco
https://soundcloud.com/webmaster-bbaa/episodio-14-equipo-comisarial-facba-21-marisa-mancilla-regina-perez-y-rosario-velasco
https://open.spotify.com/episode/3eTR7fHFmVYPc4vqlcipQV
https://podcasts.apple.com/es/podcast/radio-bellas-artes-granada/id1513608842
https://podcasts.apple.com/es/podcast/radio-bellas-artes-granada/id1513608842
https://soundcloud.com/webmaster-bbaa/sets/seminario-facba-22
https://open.spotify.com/episode/4EnTFFAEmGrVkATz91tYkb
https://podcasts.apple.com/es/podcast/episodio-29-equipo-comisarial-marisa-mancilla-y-rosario/id1513608842?i=1000569252673
https://podcasts.apple.com/es/podcast/episodio-29-equipo-comisarial-marisa-mancilla-y-rosario/id1513608842?i=1000569252673

Musical works
B.7. Openings for FACBA Podcasts

Ready-made music

Following the lockdown caused by the COVID-19 pandemic in 2020, the Faculty of
Fine Arts at the University of Granada, traditionally hosting an annual festival, opted to
replace their usual exhibition with a podcast featuring artist interviews. I was tasked with
creating the musical introduction that opens and closes each episode, a role that continued
in subsequent seasons as the podcast remained active.

My working method involved preparing a series of musical proposals under one
premise: to use the music exactly as it was produced by the GenoMus in just a few
milliseconds. Human intervention was limited to selecting a virtual instrument and, in
some cases, adding complementary sound effects. For the 2021 edition, the musical output
was a sound synthesis score for Csound, unaltered except for mastering.

It should be noted that these have been the first proper commercial use cases of the
tool and that the ratio between work time and economic benefit was very favorable, if this
can be considered a possible objective criterion for validating the tool.

332

Musical works
B.8. Tiento

B.8. Tiento

Composers: Pilar Miralles & José López-Montes
Instrumentation: binaural tape

Duration: 35 min
Comission: University of Granada — Faculty of Fine Arts

Podcast La variación infinita in Festival FACBA
Premieres: July 21st, 2021, released at several digital platforms

URLs: Soundcloud:
https://soundcloud.com/webmaster-bbaa/episodio-especial-m

-del-pilar-miralles-y-jose-lopez-montes-tiento

Spotify:
https://open.spotify.com/episode/2jGEQovaGjl280KeV5epeb

Apple Podcast:
https://podcasts.apple.com/es/podcast/episodio-especial-m

-del-pilar-miralles-y-jos%C3%A9-l%C3%B3pez/id1513608842

Artistic concept

Tiento is a lengthy piece of pure electronic composition designed to be premiered at the
FACBA festival within its podcast La variación infinita, centered around the thematic thread
of mutation as a central element of artistic creation. After successive stages of generation,
crossbreeding, mutation, and evolution applied to sound synthesis in its purest form,
the authors presented this kind of acousmatic symphony as a demonstration of artificial
creativity in its most open and unbiased mode, allowing the machine to chart its own paths
with the greatest freedom and capacity for surprise. The preferred way to listen to the piece
is with headphones, as it extensively employs 3D binaural spatialization techniques.

The title refers to the term used in the Spanish Renaissance for instrumental pieces
with a character of contrapuntal study and sound exploration. It is the Spanish equivalent
of the Italian ricercare.

333

https://soundcloud.com/webmaster-bbaa/episodio-especial-m-del-pilar-miralles-y-jose-lopez-montes-tiento
https://soundcloud.com/webmaster-bbaa/episodio-especial-m-del-pilar-miralles-y-jose-lopez-montes-tiento
https://open.spotify.com/episode/2jGEQovaGjl280KeV5epeb
https://podcasts.apple.com/es/podcast/episodio-especial-m-del-pilar-miralles-y-jos%C3%A9-l%C3%B3pez/id1513608842
https://podcasts.apple.com/es/podcast/episodio-especial-m-del-pilar-miralles-y-jos%C3%A9-l%C3%B3pez/id1513608842

Musical works
B.8. Tiento

Methods

This piece marks the first instance in which another composer utilizes the model to
experiment with it. In this case, Pilar Miralles created all of her musical material using
GenoMus, employing it in real-time to modify audio samples also produced with this tool.
The collaborative process unfolded in several stages:

Creation of raw synthetic sound material, starting from open exploration of the
algorithm in connection with Csound and utilizing SuperCollider routines as audio
synthesis engines.

Exchange of selected materials among the authors, subsequently mutated using
GenoMus as a real-time controller for a sound manipulation tool created in Max.

Composition of medium-length sections by organizing and overlaying the obtained
materials, avoiding modification of the products of autonomous algorithmic mani-
pulation.

Proposals for the sequential arrangement of the selected sections.

Mixing, binaural spatialization, and final post-production processes.

334

Musical works
B.8. Tiento

Figure 145: First conceptualization of the germinal vector and retrotranscription in the model. Adapted from
Lopez-Montes and Miralles [86].

Besides using the tool as a remote controller for another program, the main novelty
introduced by this composition in the development of GenoMus was the first implemen-
tation of the germinal vector and retrotranscription, as explained in Sections 5.4 and 5.6.
In an article by the authors dedicated to this piece in the publication associated with
the FACBA podcast [86], Figure 145 appeared to explain the analogies between genomics
processes and the data abstractions handled for composition. This was described in that
article as follows:

335

Musical works
B.8. Tiento

Germinal vector: The primordial material from which the process begins is a random se-
quence of numbers between 0 and 1, a pure mathematical abstraction that determines
the complex decision tree that forms each musical fragment. I call this numerical
sequence the germinal vector, which would correspond to DNA as the repository
of genetic information from which the rest of the generative processes are initiated.
Any numerical sequence is valid as a germinal vector.

Decoded genotype: The germinal vector, along with other initial conditions such as
constraints on the maximum allowed dimensions of branching and extension of the
parameter tree, is translated into the decoded genotype, which is a textual expression
comprised of musical functions taken from a library of basic compositional proce-
dures (repetition, remapping, generative and stochastic processes, addition of more
polyphonic lines, etc.). The encoded genotype corresponds in this analogy to mRNA,
the product of the transcription of DNA strands as an intermediate step in protein
production.

Phenotype: The final step is the translation of these processes invoked by the decoded
genotype, achieved by finally evaluating the functional expression that constitutes the
genotype itself. The phenotype would be analogous to the final organism, comprised
of different musical elements, akin to proteins materialized by the execution of the
information transcribed in mRNA.

Encoded genotype: Once a decoded genotype, considered useful for its musical result,
has been selected, a reverse transcription is performed, recoding it again as an opti-
mized germinal vector (purely numerical). This operation allows selected character-
istics to be separated from unnecessary parts of the original germinal vector, thereby
enhancing the quality and expressive precision of the material with which mutation
and recombination will continue. Reverse coding also exists in biology: the enzyme
reverse transcriptase copies mRNA into DNA, as seen in retroviruses, for example.
In our case, this operation is essential to obtain high-quality germinal vectors from
the initial random genetic material, free from redundant or unnecessary information.

Waveform and spectrogram

Attached below is the graphical representation of the entire piece, displaying the wave-
form (monophonic version) alongside the spectrogram, with a vertical range of up to
20 kHz. Although this doesn’t replace listening, it can aid in visualizing the diversity of
textures in event generation and timbre modulation achieved with the tool for a large-scale
composition.

336

Musical works
B.8. Tiento

337

Musical works
B.8. Tiento

338

Musical works
B.8. Tiento

339

Musical works
B.8. Tiento

340

Musical works
B.8. Tiento

Figure 146: Spectrogram of Tiento

341

Musical works
B.9. Rudepoema na penumbra

B.9. Rudepoema na penumbra

Instrumentation: quadraphonic tape
Duration: 23 min

Comission: University of Granada — Cátedra Manuel de Falla
Premieres: March 24th, 2022 — Espacio V Centenario (Granada)

URLs: Stereo version:
https://www.lopezmontes.es/archivos/audio/Lopez-Monte

s-Rudeapoema_na_penumbra-stereo.mp3

Artistic concept

Rudepoema is a magnificent piano composition by the Brazilian composer Heitor Villa-
Lobos. Its style embodies a wild virtuosity, and its language might evoke this question:
What if Stravinsky had envisioned The Rite of Spring in the Amazonian jungle? This elec-
troacoustic piece looks forward to the abundance of sounds and harmonic colors found in
Villa-Lobos’ work. The goal is to recreate an atmosphere of perceptual saturation, focusing
the listener on the macro-scale musical form. The quadraphonic spatialization equally
relies on very rapid algorithmic trajectories that shape the space itself, adding textures to
the sonic layers. This aesthetic approach is tailored to leverage of the possibilities offered
by the latest iteration of GenoMus presented in this thesis.

Methods

Every audio signal was generated in real-time using SuperCollider, employing various
relatively simple synthesis and sampling modules. Event sequences were created using
GenoMus, utilizing the current interface, and immediately sent to SuperCollider using
OSC. Listing 99 displays a Max–OSC bridge in SuperCollider. Different versions of each
sequence were generated using transformation and evolution utilities until achieving the
best results. Various species with several event extra parameters were used, corresponding
to the employed synthesis module. Furthermore, an intermediate layer of fine mapping
was added, allowing quick adjustments with a MIDI interface, further streamlining the

342

https://www.lopezmontes.es/archivos/audio/Lopez-Montes-Rudeapoema_na_penumbra-stereo.mp3
https://www.lopezmontes.es/archivos/audio/Lopez-Montes-Rudeapoema_na_penumbra-stereo.mp3

Musical works
B.9. Rudepoema na penumbra

workflow. With this working method, the time needed to produce all musical materials
was just a few hours.

1 (// creates a synth for dense textures based on additive synthesis

2 SynthDef("klankOverlapTexture", {

3 // arguments to be controlled with GenoMus

4 |out = 0,

5 freqs = #[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

6 rings = #[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

7 attack = 0.9, sustain = 8, release = 5, panning = 0|

8 // internal variables

9 var envelope = EnvGen.kr(

10 Env.perc(attackTime: 0.1, releaseTime: sustain, level: 1, curve: -4), doneAction: 2);

11 var inputSignal = Decay.ar(Impulse.ar(0.00001, mul: attack), 0.03, ClipNoise.ar(0.02));

12 var coreSynth = Klank.ar(`[freqs, nil, rings], inputSignal);

13 Out.ar(out, PanAz.ar(4, coreSynth * envelope, panning));

14 }).add;

15)

16 (// routes GenoMus events from Max in real-time to play the Synth

17 ~partiels = 20;

18 ~playGenoMusScoreFromMax = { |msg| // this argument receives each event parameters as an

array

19 if(msg[0] == 'list') {

20 msg.postln; // posts OSC messages for monitoring

21 Synth("klankOverlapTexture", [// creates calls for each new received event

22 \attack, msg[5],

23 \sustain, msg[2],

24 \release, msg[4],

25 \panning, msg[6],

26 \freqs, (msg[1] * 0.01).midicps * ((1..~partiels) + ({(msg[7].rand)}!~partiels)),

27 \rings, Array.rand(~partiels, 0.1, 1)

28]);

29 }

30 };

31 thisProcess.addOSCRecvFunc(~playGenoMusScoreFromMax);

32);

Listing 99: Rudepoema na penumbra — SuperCollider receiving GenoMus data via OSC

Waveform and spectrogram

Below is the graphical representation of the entire piece, displaying the waveform
(monophonic version) alongside the spectrogram, with a vertical range of up to 20 kHz.

343

Musical works
B.9. Rudepoema na penumbra

344

Musical works
B.9. Rudepoema na penumbra

345

Musical works
B.9. Rudepoema na penumbra

346

Musical works
11.9. Rudepoema na penumbra

Figure 147: Spectrogram of Rudepoema na penumbra

347

Bibliography

[1] A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen,
A. Roberts, M. Tagliasacchi, et al. MusicLM: Generating music from text. arXiv preprint
arXiv:2301.11325, 2023.

[2] A. Agostini and D. Ghisi. Gestures, events and symbols in the bach environment. In Journées
d’Informatique Musicale (JIM 2012), pp. 247–255, 2012.

[3] A. Agostini and D. Ghisi. A Max library for musical notation and computer-aided composi-
tion. Computer Music Journal, 39(2):11–27, 2015.

[4] D. D. Albarracín-Molina, A. Raglio, F. Rivas-Ruiz, and F. J. Vico. Using formal grammars as
musical genome. Applied Sciences, 11(9), 2021.

[5] A. P. Alivisatos, M. Chun, G. M. Church, R. J. Greenspan, M. L. Roukes, and R. Yuste. The
brain activity map project and the challenge of functional connectomics. Neuron, 74(6):970–
974, 2012.

[6] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton. A survey of machine learning for big
code and naturalness. ACM Computing Surveys, 51(4), 2018.

[7] T. Anders. On modelling harmony with constraint programming for algorithmic composition
including a model of Schoenberg’s theory of harmony. In Handbook of artificial intelligence for
music: foundations, advanced approaches, and developments for creativity, pp. 283–326. Springer,
2021.

[8] D. Ando, P. Dahlsted, M. G. Nordahl, and H. Iba. Interactive GP with tree representation
of classical music pieces. In Lecture notes in computer science, pp. 577–584. Springer Berlin
Heidelberg.

[9] C. Ariza. An open design for computer-aided algorithmic music composition: athenaCL. PhD thesis,
New York University, 2005.

[10] C. Ariza. The interrogator as critic: The turing test and the evaluation of generative music
systems. Computer Music Journal, 33(2):48–70, 2009.

[11] Á. Arranz. La poética del espacio en la creación musical electrónica contemporánea: Orígenes, técnicas
y extensiones desde la perspectiva del Instituto de Sonología en La Haya. PhD thesis, Universidad
de Salamanca, 2017.

348

Bibliography

[12] L. Atencio. Functional programming in JavaScript. Manning, 2019.

[13] P. Ball. Computer science: Algorithmic rapture, 2012.

[14] I. Barbancho, A. Rosa-Pujazón, L. J. Tardón, and A. M. Barbancho. Human–computer inter-
action and music. In Sound - Perception - Performance, pp. 367–389. Springer, 2013.

[15] G. Bennett. Chaos, self-similarity, musical phrase and form. (Unpublished paper), 1996.

[16] B. Berger, M. S. Waterman, and Y. W. Yu. Levenshtein distance, sequence comparison and
biological database search. IEEE Transactions on Information Theory, 67(6):3287–3294, 2021.

[17] J. L. Besada. Computer, formalisms, intuition and metaphors. A Xenakian and post-Xenakian
approach. In Proceedings International Computer Music Conference 2014, pp. 136–141, 2014.

[18] J. L. Besada. Math and music, models and metaphors: Alberto Posadas’ “tree-like structures”.
Contemporary Music Review, 38(1-2):107–131, 2019.

[19] P. Beyls. Aesthetic navigation: Musical complexity engineering using genetic algorithms. In
Journées d’Informatique Musicale, 1997.

[20] P. Beyls. Selectionist musical automata: Integrating explicit instruction and evolutionary
algorithms. In IX Brazilian Symposium on Computer Music. Brazilian Computing Society, 2003.

[21] R. Bod. The data-oriented parsing approach: Theory and application. In Computational
intelligence: A compendium, pp. 330–342. Springer Berlin Heidelberg, 2008.

[22] M. A. Boden. What is creativity? In Dimensions of creativity, pp. 75–118. The MIT Press, 1996.

[23] J. Borg. The Somax 2 software architecture. Technical report, 2021.

[24] H. Borgdorff. The conflict of the faculties: Perspectives on artistic research and academia. Leiden
University Press, 2012.

[25] P. Boulez. Technology and the composer. Leonardo, 11(1):59–62, 1978.

[26] B. G. Buchanan. Creativity at the metalevel: AAAI-2000 Presidential address. AI Magazine,
22(3):13, 2001.

[27] A. R. Burton. A hybrid neuro-genetic pattern evolution system applied to musical composition. PhD
thesis, University of Surrey, 1998.

[28] A. R. Burton and T. Vladimirova. Generation of musical sequences with genetic techniques.
Computer Music Journal, 23(4):59–73, 1999.

[29] J. Cage. Silence: Lectures and writings. Wesleyan University Press, 1961.

[30] A. Carretero. El proceso de composición musical a través las técnicas bio-inspiradas de inteligencia
artificial. Investigación desde la creación musical. PhD thesis, Universidad Rey Juan Carlos, 2013.

349

Bibliography

[31] T. Catalán. El compositor Ramón Barce en la música española del siglo XX. Análisis y edición
comentada de sus escritos técnicos, estéticos y sociológicos esenciales. PhD thesis, University of
Valencia, 2005.

[32] M. Cook. Universality in elementary cellular automata. Complex Systems, 15(1):1–40, 2004.

[33] D. Cope. Virtual music: Computer synthesis of musical style. The MIT Press, 2004.

[34] D. Cope. Computer models of musical creativity. The MIT Press, 2005.

[35] R. Crawford. Algorithmic music composition: A hybrid approach. Northern Kentucky University,
2015.

[36] D. Crispin. Artistic research as a process of unfolding. In Research catalogue: An international
database for artistic research, 2019.

[37] R. Damaševičius and V. Štuikys. Taxonomy of the fundamental concepts of metaprogram-
ming. Information Technology and Control, 37(2), 2008.

[38] R. B. Dannenberg. The Canon score language. Computer Music Journal, 13(1):47–56, 1989.

[39] F. D. S. De Benedictis. L’Auditorium che canta 1.0. Istituto Superiore de Studi Musicali Pietro
Mascagni, Livorno, 2015.

[40] D. de la Motte. Kontrapunkt. Ein Lese- und Arbeitsbuch. Bärenreiter, 1981.

[41] A. O. de la Puente, R. S. Alfonso, and M. A. Moreno. Automatic composition of music by
means of grammatical evolution. In 2002 Conference on Array Processing Languages - APL ’02.
ACM Press, 2002.

[42] C. de Lemos Almada. Gödel-vector and Gödel-address as tools for genealogical determi-
nation of genetically-produced musical variants. In Computational Music Science, pp. 9–16.
Springer, 2017.

[43] K. Déguernel, E. Vincent, and G. Assayag. Using multidimensional sequences for improvisa-
tion in the OMax paradigm. In 13th Sound and Music Computing Conference, 2016.

[44] M. Delgado, W. Fajardo, and M. Molina-Solana. Inmamusys: Intelligent multiagent music
system. Expert Systems with Applications, 36(3, Part 1):4574–4580, 2009.

[45] A. Di Scipio. Pensare le tecnologie del suono e della musica. Editoriale scientifica, 2013.

[46] A. Díaz de la Fuente. Una mirada a Cripsis de Alberto Posadas. In_Des_Ar. Investigar desde
el Arte, pp. 173–185, 2011.

[47] G. Díaz-Jerez. Composing with Melomics: Delving into the computational world for musical
inspiration. Leonardo, 21:13–14, 2011.

[48] P. Doornbusch. Mapping in algorithmic composition and related practices. RMIT University,
Victoria, 2010.

350

Bibliography

[49] M. Dostál. Evolutionary music composition. In Handbook of optimization, pp. 935–964. Springer
Berlin Heidelberg, 2013.

[50] F. Drewes and J. Högberg. An algebra for tree-based music generation. In 2nd International
Conference on Algebraic Informatics, Lecture notes in computer science, volume 4728, pp. 172–188,
2007.

[51] B. Eckel and L. O’Brien. Thinking in C#. Prentice Hall, 2002.

[52] L. Eibensteiner. Polyphonic music composition with grammars. PhD thesis, Technischen Univer-
sität Wien, 2021.

[53] J. D. Fernández and F. Vico. AI methods in algorithmic composition: A comprehensive
survey. Journal of Artificial Intelligence Research, 48:513–582, 2013.

[54] M. Fiorini and M. Malt. Somax2—A distributed co-creative system for human-machine
co-improvisation. In HHAI 2023: Augmenting Human Intellect, pp. 389–391. IOS Press, 2023.

[55] D. Formaggio. L’arte: Come idea e come esperienza. Mondadori, 1990.

[56] P. Galanter. Computational aesthetic evaluation: Past and future. In Computers and creativity,
pp. 255–293. Springer Berlin Heidelberg, 2012.

[57] R. García-Benito and E. Pérez-Montero. Painting graphs with sounds: Cosmonic sonification
project. Revista Mexicana de Astronomía y Astrofísica, (54):28–33, 2022.

[58] C. Hernández-Oliván and J. R. Beltrán. Music composition with deep learning: A review.
In Advances in speech and music technology: Computational aspects and applications, pp. 25–50.
Springer, 2023.

[59] C. Hernández-Oliván, J. Hernández-Oliván, and J. R. Beltrán. A survey on artificial
intelligence for music generation: Agents, domains and perspectives. arXiv preprint
arXiv:2210.13944, 2022.

[60] D. Herremans, C.-H. Chuan, and E. Chew. A functional taxonomy of music generation
systems. ACM Computing Surveys, 50(5):1–30, 2017.

[61] M. Hervás. Música en los museos: el caso del Guggenheim de Bilbao. Espacio Tiempo y Forma.
Serie VII, Historia del Arte, (10):255–276, 2022.

[62] P. Hindemith. The craft of musical composition. Schott, 1942.

[63] D. M. Hofmann. A genetic programming approach to generating musical compositions. In
Evolutionary and biologically inspired music, sound, art and design, pp. 89–100. Springer, 2015.

[64] D. M. Hofmann. Introducing a context-based model and language for representation, trans-
formation, visualization, analysis and generation of music. In Proceedings of the International
Computer Music Conference, p. 381, 2016.

351

Bibliography

[65] D. M. Hofmann. Music processing suite: A software system for context-based symbolic music
representation, visualization, transformation, analysis and generation. PhD thesis, University of
Music Karlsruhe, 2018.

[66] D. R. Hofstadter. Gödel, Escher, Bach: an eternal golden braid. Basic Books Inc., 1979.

[67] S. Holland and R. Fiebrink. Machine learning, music and creativity: An interview with
Rebecca Fiebrink. In New directions in music and human-computer interaction, pp. 259–267.
Springer, 2019.

[68] Z. Hu, X. Ma, Y. Liu, G. Chen, Y. Liu, and R. B. Dannenberg. The beauty of repetition: an
algorithmic composition model with motif-level repetition generator and outline-to-music
generator in symbolic music generation. IEEE Transactions on Multimedia, pp. 1–14, 2023.

[69] P. Hudak and D. Quick. The Haskell school of music: From signals to symphonies. Cambridge
University Press, 2018.

[70] J. Hughes. Why functional programming matters. Programming Methodology Group, Chalmers
University of Technology / Göteborg University, 1984.

[71] B. L. Jacob. Composing with genetic algorithms. In International Computer Music Conference,
1995.

[72] B. L. Jacob. Algorithmic composition as a model of creativity. Organised Sound, 1(3):157–165,
1996.

[73] G. M. Koenig. Working with “Project 1” my experiences with computer composition. Interface,
20(3-4):175–180, 1991.

[74] A. Kontogeorgakopoulos. Music, art installations and haptic technology. Arts, 12(4), 2023.

[75] P. Laine and M. Kuuskankare. Genetic algorithms in musical style oriented generation. In
First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational
Intelligence, 1994.

[76] J. Lee-Thorp, J. Ainslie, I. Eckstein, and S. Ontanon. FNet: Mixing tokens with Fourier
transforms. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human language technologies, pp. 4296–4313, 2022.

[77] F. Lerdahl and R. Jackendoff. A generative theory of tonal music. The MIT Press, 1983.

[78] B. R. Levy. The electronic works of György Ligeti and their influence on his later style. University
of Maryland, College Park, 2006.

[79] D. Lobo. Evolutionary development based on genetic regulatory models for behavior-finding. PhD
thesis, Universidad de Málaga, 2014.

[80] M. Longair. Revolutions in music and physics, 1900–30. Interdisciplinary Science Reviews,
31(3):275–288, 2006.

352

Bibliography

[81] A. López and J. Munarriz. El Centro de Cálculo de la Universidad de Madrid (1968-1973): ciencia,
arte y creación computacional. Ediciones Complutense, 2021.

[82] R. López de Mántaras. Making music with AI: some examples. In 2006 Conference on Rob
Milne: A tribute to a pioneering AI scientist, entrepreneur and mountaineer, pp. 90–100. IOS Press,
2006.

[83] J. López-Montes. Ada + Babbage − Capricci, for cello and piano. Espacio Sonoro, (35), 2015.

[84] J. López-Montes. Genomus como aproximación a la creatividad asistida por computadora.
Espacio Sonoro, (35), 2015.

[85] J. López-Montes. Microcontrapunctus: metaprogramación con GenoMus aplicada a la síntesis
de sonido. Espacio Sonoro, (48), 2016.

[86] J. López-Montes and P. Miralles. Tiento: creatividad artificial con GenoMus para la com-
posición colaborativa de música electrónica. In FACBA’21: Seminario “La variación infinita”,
pp. 62–69. Ed. Universidad de Granada, 2021.

[87] J. López-Montes, M. Molina-Solana, and W. Fajardo. Genomus: Representing procedural
musical structures with an encoded functional grammar optimized for metaprogramming
and machine learning. Applied Sciences, 12(16), 2022.

[88] O. López-Rincón, O. Starostenko, and G. A.-S. Martín. Algoritmic music composition based
on artificial intelligence: A survey. In 2018 International Conference on Electronics, Communica-
tions and Computers. IEEE, 2018.

[89] R. Loughran and M. O’Neill. Generative music evaluation: Why do we limit to ‘human’? In
Proceedings of the first Conference on Computer Simulation of Musical Creativity, 2016.

[90] R. Maconie. The concept of music. Clarendon Press, 1990.

[91] B. Mandelbrot. The fractal geometry of nature. W. H. Freeman and Co., 1982.

[92] M. Mannone, F. Thalmann, M. Rahaim, J. Ho, M. Mannone, A. Lubet, R. Guitart, and G. Maz-
zola. The topos of music III: Gestures – Musical multiverse ontologies. Springer, 2017.

[93] S. Manousakis. Musical L-systems. Master’s thesis, Koninklijk Conservatorium, The Hague,
2006.

[94] C. Martín. La música visual del compositor José López-Montes. Master’s thesis, Universidad de
Oviedo, Universidad de Granada y Universidad Internacional de Andalucía, 2020.

[95] G. Mazzola. The topos of music I: Theory – Geometric logic, classification, harmony, counterpoint,
motives, rhythm. Springer, 2002.

[96] J. McCormack. Open problems in evolutionary music and art. In Applications of evolutionary
computing, EvoWorkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, and
EvoSTOC, pp. 428–436, 2005.

353

Bibliography

[97] D. Mertz. Functional programming in Python. O’Reilly Media, 2015.

[98] O. Messiaen. Technique de mon langage musical. Alphonse Leduc, 1944.

[99] L. B. Meyer. Style and music: theory, history, and ideology. University of Chicago Press, 1996.

[100] Z. Mheich, L. Wen, P. Xiao, and A. Maaref. Design of SCMA codebooks based on golden
angle modulation. IEEE Transactions on Vehicular Technology, 68(2):1501–1509, 2019.

[101] G. Michaelson. An introduction to functional programming through Lambda calculus. Courier
Corporation, 2011.

[102] M. Minsky. Why people think computers can’t. AI Magazine, 3(4):3–15, 1982.

[103] E. R. Miranda. Genetic music system with synthetic biology. Artificial Life, 26(3):366–390,
2020.

[104] E. R. Miranda. Handbook of artificial intelligence for music: foundations, advanced approaches, and
developments for creativity. Springer, 2021.

[105] E. R. Miranda and J. Castet. Guide to brain-computer music interfacing. Springer, 2014.

[106] E. R. Miranda and H. Miller-Bakewell. Cellular automata music composition: From classical
to quantum. In Quantum computer music: Foundations, methods and advanced concepts, pp. 105–
130. Springer, 2022.

[107] E. R. Miranda and H. Shaji. Generative music with partitioned quantum cellular automata.
Applied Sciences, 13(4), 2023.

[108] G. Nierhaus. Algorithmic composition: Paradigms of automated music generation. Springer, 2008.

[109] S. Ninagawa. 1/f Noise in elementary cellular automaton rule 110. In Unconventional
computation, pp. 207–216. Springer Berlin Heidelberg, 2006.

[110] T. Oliwa and M. Wagner. Composing music with neural networks and probabilistic finite-
state machines. In Applications of evolutionary computing: EvoWorkshops 2008: EvoCOMNET,
EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC, and EvoTransLog, pp. 503–508.
Springer, 2008.

[111] D. C. Ong. Quasiperiodic music. Journal of Mathematics and the Arts, 14(4):285–296, 2020.

[112] B. Ostash and M. Anisimova. Visualizing codon usage within and across genomes: Concepts
and tools. In Statistical modelling and machine learning principles for bioinformatics techniques,
tools, and applications, pp. 213–288. Springer Singapore, 2020.

[113] J. Palamara and W. S. Deal. A dynamic representation solution for machine learning-aided
performance technology. Frontiers in Artificial Intelligence, 3, 2020.

354

Bibliography

[114] G. Papadopoulos and G. Wiggins. AI methods for algorithmic composition: A survey, a
critical view and future prospects. In AISB Symposium on Musical Creativity, pp. 110–117,
1999.

[115] M. Pearce, D. Meredith, and G. Wiggins. Motivations and methodologies for automation of
the compositional process. Musicae Scientiae, 6(2):119–147, 2002.

[116] M. Pedregosa. GenoMus: Rediseño y desarrollo. Implementación de un motor de cómputo funcional
basado en prototipos sobre estructuras musicales. Bachelor’s thesis, Universidad de Granada,
2022.

[117] J. Reddin, J. McDermott, and M. O’Neill. Elevated pitch: Automated grammatical evolution
of short compositions. In Applications of evolutionary computing, pp. 579–584. Springer Berlin
Heidelberg, 2009.

[118] G. Revesz. Lambda-calculus combinators and functional programming. Oxford University Press,
1988.

[119] F.-R. Rideau. Métaprogrammation et libre disponibilité des sources. In Actes de la conférence
«Autour du Libre 1999», 1999.

[120] J.-C. Risset. The liberation of sound, art-science and the digital domain: Contacts with Edgard
Varèse. Contemporary Music Review, 23(2):27–54, 2004.

[121] C. Roads. Composing grammars. In International Conference on Mathematics and Computing,
1977.

[122] C. Roads. Microsound. The MIT Press, 2004.

[123] C. Roads and P. R. Wieneke. Grammars as representations for music. Computer Music Journal,
3:48, 1979.

[124] C. Roig, L. J. Tardón, I. Barbancho, and A. M. Barbancho. A non-homogeneous beat-based
harmony markov model. Knowledge-Based Systems, 142:85–94, 2018.

[125] V. Rolla, P. Riera, P. Souza, J. Zubelli, and L. Velho. Self-similarity of classical music networks.
Fractals, 29(02):2150041, 2021.

[126] B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. Ruiz,
J. S. Ellenberg, P. Wang, O. Fawzi, et al. Mathematical discoveries from program search with
large language models. Nature, pp. 1–3, 2023.

[127] J. Romero. Metodología evolutiva para la construcción de modelos cognitivos complejos. Exploración
de la creatividad artificial en composición musical. PhD thesis, Universidade da Coruña, 2002.

[128] J. Rowe and D. Partridge. Creativity: a survey of AI approaches. Artificial Intelligence Review,
7(1):43–70, 1993.

[129] S. Russomanno. La música invisible. En busca de la armonía de las esferas. Fórcola Ediciones,
2017.

355

Bibliography

[130] C. Sánchez.Quintana, F. Moreno-Arcas, D. Albarracín-Molina, J. D. Fernández, and F. J. Vico.
Melomics: A case-study of AI in Spain. AI Magazine, 34(3):99, 2013.

[131] Ö. Sandred. Constraint-solving systems in music creation. In Handbook of artificial intelligence
for music: Foundations, advanced approaches, and developments for creativity, pp. 327–344. Springer,
2021.

[132] E. Satie. Mémoires d’un amnésique. Ombres, 2010 (Original work written in 1912).

[133] C. Satué. Arquitecturas musicales desarrolladas con técnicas fractales. Matematicalia, 2(5),
2007.

[134] A. Schaathun. Formula-composition modernism in music made audible. In Inspirator –
Tradisjonsbærer – Rabulist, pp. 132–147. Norsk Musikforlag, 1996.

[135] J. Schacher, C. Eck, K. Reese, and T. Lossius. sonozones. Sound art investigations in public
places. Journal for Artistic Research, 2014, 09 2014.

[136] J. Schmidhuber. Low-complexity art. Leonardo, 30(2):97–103, 1997.

[137] J. Schmidhuber. Gödel machines: Fully self-referential optimal universal self-improvers. In
Artificial general intelligence, pp. 199–226. Springer, 2007.

[138] A. Schönberg. Harmonielehre. Universal-Edition, 1911.

[139] J. Searle. Freedom and neurobiology: Reflections on free will, language, and political power. Columbia
University Press, 2006.

[140] J. Shao, J. McDermott, M. O’Neill, and A. Brabazon. Jive: A generative, interactive, virtual,
evolutionary music system. In Applications of evolutionary computation, pp. 341–350. Springer
Berlin Heidelberg, 2010.

[141] K. Singh and D. Malhotra. Meta-health: Learning-to-learn (meta-learning) as a next gene-
ration of deep learning exploring healthcare challenges and solutions for rare disorders: A
systematic analysis. Archives of Computational Methods in Engineering, pp. 1–32, 2023.

[142] J. Sloboda. Exploring the musical mind: Cognition, emotion, ability, function. PhD thesis, 2005.

[143] L. Spector and A. Alpern. Induction and recapitulation of deep musical structure. In IJCAI-95
Workshop on artificial intelligence and music, pp. 41–48, 2019.

[144] K. O. Stanley and R. Miikkulainen. A taxonomy for artificial embryogeny. Artificial Life,
9(2):93–130, 2003.

[145] T. Stilson and J. O. Smith III. Alias-free digital synthesis of classic analog waveforms. In
ICMC, 1996.

[146] K. Stockhausen and M. Tannenbaum. Conversations with Stockhausen. Clarendon Press, 1987.

[147] I. Stravinsky. Poetics of music in the form of six lessons. Harvard University Press, 1970.

356

Bibliography

[148] C. Sulyok, C. Harte, and Z. Bodó. On the impact of domain-specific knowledge in evolu-
tionary music composition. In Genetic and Evolutionary Computation Conference. ACM Press,
2019.

[149] H. Taube. Common Music: A music composition language in Common Lisp and CLOS.
Computer Music Journal, 15(2):21–32, 1991.

[150] P. J. Vayón. Entre la armonía y el ruido. Diario de Sevilla, December 12th, 2012.

[151] F. Vico, D. Albarracín-Molina, G. Díaz-Jerez, and L. Manzoni. Automatic music composition
with evolutionary algorithms: Digging into the roots of biological creativity. In Handbook of
artificial intelligence for music: Foundations, advanced approaches, and developments for creativity,
pp. 455–483. Springer, 2021.

[152] J. von Neumann. The collected works of John von Neumann. Reader’s Digest Young Families,
1963.

[153] R. F. Voss and J. Clarke. “1/fnoise” in music and speech. Nature, (258):317–318, 1975.

[154] S. Wang, Z. Bao, and J. E. Armor: A benchmark for meta-evaluation of artificial music. In
Proceedings of the 29th ACM International Conference on Multimedia, MM ’21, page 5583–5590.
Association for Computing Machinery, 2021.

[155] S. Wilson. An aesthetics of past-present relations in the experience of late 20th –and early 21st–
century art music. PhD thesis, University of London, 2013.

[156] S. Wolfram. A new kind of science. Wolfram Media, 2002.

[157] R. Wooller, A. R. Brown, E. R. Miranda, J. Diederich, and R. Berry. A framework for com-
parison of process in algorithmic music systems. In Generative Arts Practice, pp. 109–124.
Creativity and Cognition Studios, 2005.

[158] I. Xenakis. Formalized music: Thought and mathematics in composition. Indiana University Press,
1971.

[159] L. M. Zbikowski. Foundations of musical grammar. Oxford University Press, 2017.

357

	GenoMus
	Dedication
	Abstract
	Resumen
	Contents
	Figures
	Tables
	Code listings
	Introduction
	Programming is (meta)composing
	Scope of the study
	Hypothesis and research objectives
	Interactive experimental setup
	What this research is not about
	Thesis structure and reading recommendations
	Source code and software

	Background
	Artificial creativity or creative artifice?
	The role of the machine in the evolution of style
	Trends in CAC
	Exploration of abstract mathematical processes
	Grammars for automated composition
	CAC meets AI
	Bioinspired strategies
	Metaprogramming and functional programming
	The problem of automated aesthetic evaluation
	Insights into aesthetic pleasure

	Conceptual and formal framework
	Composing composers
	Music as an encoded functional grammar
	The biological metaphor
	Formal definitions
	Retrotranscription of genotypes into germinal vectors

	Main data structures
	Anatomy of a specimen
	Function types
	Anatomy of a genotype function
	Leaf types
	Leaf parameters and mapping design
	Eligible values and Gaussian conversion
	Generic parameter leaf
	voidLeaf
	notevalueLeaf
	midipitchLeaf
	articulationLeaf
	intensityLeaf
	quantizedLeaf
	Golden encoded integers and goldenintegerLeaf

	Internal structure of the score
	Representations of generated music

	Genotype functions
	Identity functions
	Lists
	Formal structures
	Deterministic and random processes
	Repetition and iteration
	Harmony
	Generative subprocesses
	Recursions with type recursiveF
	Internal autoreferences
	The importance of self-reference in music
	Subgenotype indexing
	Minimal examples of internal autoreference
	Definition of autoref functions
	Indexing tree and subgenotype calls

	Genotype functions libraries
	Creation and updating of libraries
	Indexing functions with golden encoded integers
	Influence of the palette of eligible functions on style

	Encoding and decoding
	Genotype encoding
	Leaf type identifiers
	Leaf values
	Function opening and closing flags
	Genotype function indices

	Minimal examples
	Visualization of unidimensional vectors
	Germinal vector and genotype decoding
	Initial conditions for specimen rendering
	Retrotranscription of genotypes as germinal vectors
	Phenotype encoding
	Phenotype decoding

	Specimens generation
	Metaprogramming of genotypes
	Summary of the subprocesses
	The core metaprogramming subroutine

	Formatting of specimens
	Specimen metadata
	specimenID
	comments
	rating
	generativityIndex
	germinalVectorDeviation
	history

	Playback options as epigenetic conditions
	Tempo control with playbackRate
	Rhythm quantization with minQuantizedNotevalue
	Equal temperaments with stepsPerOctave

	Evaluation and evolution
	Specimen and variations
	Music from pure randomness
	Starting with very short germinal vectors
	Leaves mutation
	Germinal vector mutation

	Coevolutionary techniques
	Sessions and global status
	Temperature and segmentation

	Procedural analysis
	Clapping Music as a procedural genotype
	Converting a procedure into a new genotype function

	Results
	A procedural framework optimized for metaprogramming
	Artistic research shaping software
	An open tool for augmented musical creativity

	Conclusions
	Conclusiones
	Appendices
	GenoMus user interface
	Main patch
	Communication with core code
	Control of initial conditions
	Decoded genotype editor
	Specimen monitoring
	Score viewers
	Selection and evolution of specimens
	Outputs

	Musical works
	Threnody for Dimitris Christoulas
	Artistic concept
	Reception
	Methods
	A genetic algorithm for electronics
	Genotypes and scores

	Ada + Babbage - Capricci
	Artistic concept
	Genotypes and scores

	Microcontrapunctus
	Artistic concept
	Methods
	Waveforms and spectrograms

	Seven Places
	Artistic concept
	Methods

	Choral Riffs from Coral Reefs
	Artistic concept and methods

	Juno
	Heuristics for harmony and instrumentation

	Openings for FACBA Podcasts
	Ready-made music

	Tiento
	Artistic concept
	Methods
	Waveform and spectrogram

	Rudepoema na penumbra
	Artistic concept
	Methods
	Waveform and spectrogram

	Bibliography

